14、給出下列四個命題:
①若集合A,B滿足A∩B=A,則A⊆B;
②給定命題p,q,若“p∨q”為真,則“p∧q”為真;
③設(shè)a,b,m∈R,若a<b,則am2<bm2
④若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a=1.其中真命題的個數(shù)是
2個
.(寫出所有真命題的個數(shù))
分析:由集合之間的包含關(guān)系及交集運算可以判斷①是正確的,
由復(fù)合命題的真假判斷方法,我們易判斷②是錯誤的,
由不等式的性質(zhì),舉出反例m=0易判斷③是錯誤的,
直線的位置關(guān)系與斜率的關(guān)系,我們構(gòu)造關(guān)于a的方程,解方程后,可判斷④是正確的.
解答:解:由集合的交集運算及包含關(guān)系的定義,易得A∩B=A?A⊆B,故①正確;
“p∨q”為真,則“p”與“q”中至少有一個為真,但不一定同為真,故②錯誤;
當(dāng)m=0時,am2=bm2,故,若a<b,則am2<bm2不正確,故③錯誤;
若直線l1:ax+y+1=0與直線l2:x-y+1=0垂直,則a-1=0,即a=1.故④正確
故答案為:2
點評:本題考查的知識點是集合之間的包含關(guān)系及交集運算,復(fù)合命題的真假判斷,不等式的性質(zhì),線段的位置關(guān)系,利用上述對四個結(jié)論逐一進(jìn)行判斷,易給出答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案