【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形,,C.
(1)求證:直線直線;
(2)若直線與底面ABC成的角為,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)先證平面,再證平面,可證直線直線
(2)由作AB的垂線,垂足為D,則 平面ABC,過A作的平行線,交于E點,則平面ABC,以AB,AC,AE分別為x,y,z軸建立空間直角坐標系,由空間向量法可求得二面角。
證明:連接,
側(cè)面為菱形,
,
又C,,
平面,
,又,,
平面,
平面,直線直線;
解:由知,平面平面,由作AB的垂線,垂足為D,則 平面ABC,
,得D為AB的中點,
過A作的平行線,交于E點,則平面ABC,
建立如圖所示的空間直角坐標系,設,
則 為平面的一個法向量,
則0,,2,, ,
設平面的法向量 ,
由,取,得 ,
,
故二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程是ρcos2θ=sinθ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(1)寫出直線l的極坐標方程與曲線C普通方程;
(2)線段MA,MB長度分別記為|MA|,|MB|,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器生產(chǎn)某種產(chǎn)品,如果生產(chǎn)出一件甲等品可獲利50元,生產(chǎn)出一件乙等品可獲利30元,生產(chǎn)出一件次品,要賠20元,已知這臺機器生產(chǎn)出甲等品、乙等品和次品的概率分別為0.6,0.3,和0.1,則這臺機器每生產(chǎn)一件產(chǎn)品平均預期可獲利________元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:(3+t)x﹣(t+1)y﹣4=0(t為參數(shù))和圓C:x2+y2﹣6x﹣8y+16=0:
(1)t∈R時,證明直線l與圓C總相交:
(2)直線l被圓C截得弦長最短,求此弦長并求此時t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x3-3ax+b(a≠0).
(1)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點A(0,2)是圓x2+y2=16內(nèi)的定點,B,C是這個圓上的兩個動點,若BA⊥CA,求BC中點M的軌跡方程,并說明它的軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|3x﹣ |.
(1)求不等式f(x)<1的解集;
(2)若實數(shù)a,b,c滿足a>0,b>0,c>0且a+b+c= .求證: + + ≥ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com