【題目】已知直線l:(3+t)x﹣(t+1)y﹣4=0(t為參數(shù))和圓C:x2+y2﹣6x﹣8y+16=0:
(1)t∈R時(shí),證明直線l與圓C總相交:
(2)直線l被圓C截得弦長(zhǎng)最短,求此弦長(zhǎng)并求此時(shí)t的值.
【答案】
(1)
證明:直線l:(3+t)x﹣(t+1)y﹣4=0可化為t(x﹣y)+(3x﹣y﹣4)=0
令 ,解得x=y=2
∴直線l恒過定點(diǎn)A(2,2),
(2,2),代入可得22+22﹣12﹣16+16<0,
∴t∈R時(shí),證明直線l與圓C總相交
(2)
解:直線l被圓C截得的弦長(zhǎng)的最小時(shí),弦心距最大,此時(shí)CA⊥l
∵圓C:(x﹣3)2+(y﹣4)2=9,圓心C(3,4),半徑為3
∴CA的斜率為2,
∴l(xiāng)的斜率為﹣
∵直線l:(3+t)x﹣(t+1)y﹣4=0的斜率為
∴ =﹣
∴t=﹣
∵|CA|= =
∴直線l被圓C截得的弦長(zhǎng)的最小值為2 =4
【解析】(1)直線l:(3+t)x﹣(t+1)y﹣4=0可化為t(x﹣y)+(3x﹣y﹣4)=0,解方程組 ,可得直線l恒過定點(diǎn),即可得出結(jié)論;(2)直線l被圓C截得的弦長(zhǎng)的最小時(shí),弦心距最大,此時(shí)CA⊥l,求出CA的斜率,可得l的斜率,從而可求t的值,求出弦心距,可得直線l被圓C截得的弦長(zhǎng)的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù).,若方程在區(qū)間上有四個(gè)不同的根,則
A. -8 B. -4 C. 8 D. -16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點(diǎn)分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價(jià)分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標(biāo)系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設(shè)PM=x,修建兩條道路PM,PN的總造價(jià)為f(x)萬元,題中所涉及的長(zhǎng)度單位均為百米.
(1)求f(x)解析式;
(2)當(dāng)x為多少時(shí),總造價(jià)f(x)最低?并求出最低造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C的一個(gè)焦點(diǎn)與拋物線C1:y2=-16x的焦點(diǎn)重合,且其離心率為2.
(1)求雙曲線C的方程;
(2)求雙曲線C的漸近線與拋物線C1的準(zhǔn)線所圍成三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱中,側(cè)面為菱形,底面是等腰直角三角形,,C.
(1)求證:直線直線;
(2)若直線與底面ABC成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:
(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50 kg | 箱產(chǎn)量≥50 kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓x2+2y2=1,過原點(diǎn)的兩條直線l1和l2分別于橢圓交于A、B和C、D,記得到的平行四邊形ACBD的面積為S.
(1)設(shè)A(x1 , y1),C(x2 , y2),用A、C的坐標(biāo)表示點(diǎn)C到直線l1的距離,并證明S=2|x1y2﹣x2y1|;
(2)設(shè)l1與l2的斜率之積為﹣ ,求面積S的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)水面游覽中心計(jì)劃國慶節(jié)當(dāng)日投入之多3艘游船供游客觀光,過去10年的數(shù)據(jù)資料顯示每年國慶節(jié)當(dāng)日客流量X(單位:萬人)都大于1,并把客流量分成三段整理得下表:
國慶節(jié)當(dāng)日客流量X | 1<X<3 | 3≤X≤5 | X>5 |
頻數(shù) | 2 | 4 | 4 |
以這10年的數(shù)據(jù)資料記錄的隔斷客流量的頻率作為每年客流量在隔斷發(fā)生的概率,且每年國慶節(jié)當(dāng)日客流量相互獨(dú)立.
(1)求未來連續(xù)3年國慶節(jié)當(dāng)日中,恰好有1年國慶節(jié)當(dāng)日客流量超過5萬人的概率;
(2)該水面游覽中心希望投入的游船盡可能使用,但每年國慶節(jié)當(dāng)日游船最多使用量:(單位:艘)受當(dāng)日客流量X(單位:萬人)的限制,其關(guān)聯(lián)關(guān)系如下表:
國慶節(jié)當(dāng)日客流量X | 1<X<3 | 3≤X≤5 | X>5 |
游船最多使用量 | 1 | 2 | 3 |
若某艘游船國慶節(jié)當(dāng)日使用,則水面游覽中心國慶節(jié)當(dāng)日可獲得利潤3萬元,若某艘游船國慶節(jié)當(dāng)日不使用,則水面游覽中心國慶節(jié)當(dāng)日虧損0.5萬元,記Y(單位:萬元)表示該水面游覽中心國慶節(jié)當(dāng)日獲得總利潤,當(dāng)Y的數(shù)學(xué)期望最大時(shí)稱水面游覽中心在國慶節(jié)當(dāng)日效益最佳,問該水面游覽中心的國慶節(jié)當(dāng)日應(yīng)投入多少艘游船才能使該水面游覽中心在國慶節(jié)當(dāng)日效益最佳?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com