【題目】已知函數(shù),其中為常數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)
【解析】
(1)將代入函數(shù)解析式,再求得導(dǎo)函數(shù),并令求得極值點(diǎn),即可確定的符號(hào),確定單調(diào)區(qū)間.
(2)先求得導(dǎo)函數(shù),由函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),可得在區(qū)間上恒成立,即.構(gòu)造函數(shù),即可由函數(shù)單調(diào)性求得,解不等式即可求得的取值范圍.
(1)當(dāng)時(shí),,其定義域?yàn)?/span>,
則
,
令,解得.
當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減.
所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)由題意得,
因?yàn)楹瘮?shù)在區(qū)間上為單調(diào)遞減函數(shù),
所以在區(qū)間上恒成立,
即在時(shí)恒成立,
即,
即,其中,
令,
易知函數(shù)在上單調(diào)遞增,故.
所以,
即,
解得或;
故的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅鈴蟲(chóng)是棉花的主要害蟲(chóng)之一,能對(duì)農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲(chóng)的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產(chǎn)卵數(shù)/個(gè) | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據(jù)散點(diǎn)圖判斷,與(其中自然對(duì)數(shù)的底數(shù))哪一個(gè)更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計(jì)算結(jié)果精確到小數(shù)點(diǎn)后第三位)
(2)根據(jù)以往統(tǒng)計(jì),該地每年平均溫度達(dá)到28℃以上時(shí)紅鈴蟲(chóng)會(huì)造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達(dá)到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.
②當(dāng)取最大值時(shí),記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.
附:線性回歸方程系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是我國(guó)2018年1月至12月石油進(jìn)口量統(tǒng)計(jì)圖(其中同比是今年第個(gè)月與去年第個(gè)月之比),則下列說(shuō)法錯(cuò)誤的是( )
A.2018年下半年我國(guó)原油進(jìn)口總量高于2018年上半年
B.2018年12個(gè)月中我國(guó)原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬(wàn)噸
C.2018年我國(guó)原油進(jìn)口總量高于2017年我國(guó)原油進(jìn)口總量
D.2018年1月—5月各月與2017年同期相比較,我國(guó)原油進(jìn)口量有增有減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線過(guò)點(diǎn),經(jīng)過(guò)點(diǎn)的直線與拋物線交于不同的兩點(diǎn),直線與直線交于點(diǎn),經(jīng)過(guò)點(diǎn)且與直線垂直的直線交軸于點(diǎn).
(1)求拋物線的方程和焦點(diǎn)的坐標(biāo);
(2)判斷直線與直線的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).且曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺(tái)) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;
(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購(gòu)買空調(diào)意愿的顧客進(jìn)行問(wèn)卷調(diào)查.假設(shè)該地?cái)M購(gòu)買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過(guò)營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
有購(gòu)買意愿對(duì)應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購(gòu)買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由我國(guó)引領(lǐng)的5G時(shí)代已經(jīng)到來(lái),5G的發(fā)展將直接帶動(dòng)包括運(yùn)營(yíng)、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對(duì)增長(zhǎng)產(chǎn)生直接貢獻(xiàn),并通過(guò)產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國(guó)民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對(duì)今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測(cè).結(jié)合下圖,下列說(shuō)法正確的是( )
A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加
B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長(zhǎng)較快,后期放緩
C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位
D.信息服務(wù)商與運(yùn)營(yíng)商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢(shì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn,且=9,S6=60.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)若數(shù)列{bn}滿足bn+1﹣bn=(n∈N+)且b1=3,求數(shù)列的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y2=2px(p>0)上一點(diǎn)P到準(zhǔn)線的距離與到原點(diǎn)O的距離相等,拋物線的焦點(diǎn)為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(diǎn)(異于原點(diǎn)O),點(diǎn)A處的切線交x軸于點(diǎn)B,過(guò)A作準(zhǔn)線的垂線,垂足為點(diǎn)E,試判斷四邊形AEBF的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com