【題目】如圖是我國(guó)2018年1月至12月石油進(jìn)口量統(tǒng)計(jì)圖(其中同比是今年第個(gè)月與去年第個(gè)月之比),則下列說法錯(cuò)誤的是( )
A.2018年下半年我國(guó)原油進(jìn)口總量高于2018年上半年
B.2018年12個(gè)月中我國(guó)原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬噸
C.2018年我國(guó)原油進(jìn)口總量高于2017年我國(guó)原油進(jìn)口總量
D.2018年1月—5月各月與2017年同期相比較,我國(guó)原油進(jìn)口量有增有減
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買2臺(tái)機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買2臺(tái)這種機(jī)器,F(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)購(gòu)買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺(tái)數(shù) | 5 | 10 | 20 | 15 |
以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 : ( )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長(zhǎng)為 .
(1)求橢圓 的方程;
(2)過點(diǎn) 的直線 交橢圓于 , 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),且與圓相交于兩點(diǎn),試問直線與的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,過橢圓的左焦點(diǎn)和上頂點(diǎn)的直線與圓相切.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于、兩點(diǎn),點(diǎn)與原點(diǎn)關(guān)于直線對(duì)稱,試求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),有一動(dòng)點(diǎn)到直線的距離和到點(diǎn)的距離比值是
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知點(diǎn)(異于點(diǎn))為曲線上一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線的垂線交曲線于點(diǎn),,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、、,對(duì)于給定的正整數(shù),記,.若對(duì)任意的正整數(shù)滿足:,且是等差數(shù)列,則稱數(shù)列為“”數(shù)列.
(1)若數(shù)列的前項(xiàng)和為,證明:為數(shù)列;
(2)若數(shù)列為數(shù)列,且,求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列為數(shù)列,證明:是等差數(shù)列 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com