(2012•湖南模擬)當(dāng)0<x≤
1
2
時(shí),4x<logax,則a的取值范圍
(
2
2
,1)
(
2
2
,1)
分析:若當(dāng)0<x≤
1
2
時(shí),不等式4x<logax恒成立,則在0<x≤
1
2
時(shí),y=logax的圖象恒在y=4x的圖象的上方,在同一坐標(biāo)系中,分析畫出指數(shù)和對數(shù)函數(shù)的圖象,分析可得答案.
解答:解:當(dāng)0<x≤
1
2
時(shí),函數(shù)y=4x的圖象如下圖所示
若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)
∵y=logax的圖象與y=4x的圖象交于(
1
2
,2)點(diǎn)時(shí),a=
2
2

故虛線所示的y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足
2
2
<a<1
故答案為:(
2
2
,1)
點(diǎn)評:本題以指數(shù)函數(shù)與對數(shù)函數(shù)圖象與性質(zhì)為載體考查了函數(shù)恒成立問題,其中熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的圖象與性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判斷f(x)的單調(diào)性;
(2)記φ(x)=f′(x-1)-k(x-1),若函數(shù)φ(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求證:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的對稱中心;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f″(x),若在區(qū)間(a,b)上的f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若當(dāng)實(shí)數(shù)m滿足|m|≤2時(shí),函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)設(shè)曲線y=xn+1(n∈N)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則x1•x2•x3•…•x2012的值為
1
2013
1
2013

查看答案和解析>>

同步練習(xí)冊答案