(本題滿分10分)
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點,過E作平行于底面的平面EFGH,分別與另外三條側(cè)棱相交于點F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求異面直線AF與BG所成的角的大;
(2)求平面APB與平面CPD所成的銳二面角的余弦值

(1) AF與BG所成角為;  (2)平面APB與平面CPD所成的銳二面角的余弦值為.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

幾何體的三視圖如圖,交于點分別是直線的中點,

(I)
(II);
(Ⅲ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)正方體,,E為棱的中點.
(Ⅰ) 求證:;  (Ⅱ) 求證:平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

(1)求證:平面
(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分別為MB、PB、PC的中點,且AD=PD=2MA.

(1)求證:平面EFG⊥平面PDC;
(2)求三棱錐P-MAB與四棱錐P-ABCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

、如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由.
   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

( 14分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到點,且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求證:
(Ⅱ)求證:平面平面;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在平面內(nèi),ABCD的菱形,都是正方形。將兩個正方形分別沿AD,CD折起,使重合于點D1。設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設(shè)(圖2)。

(1)設(shè)二面角E – AC – D1的大小為q,若,求的取值范圍;
(2)在線段上是否存在點,使平面平面,若存在,求出所成的比;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)
如圖,在六面體中,平面∥平面
⊥平面,,,
.且,
(1)求證: ∥平面;
(2)求二面角的余弦值;
(3) 求五面體的體積.

查看答案和解析>>

同步練習冊答案