精英家教網 > 高中數學 > 題目詳情
12.函數f(x)=sin(2x+φ)(|φ|<π)的圖象向左平移$\frac{π}{3}$個單位后得到函數g(x)=-cos2x的圖象,則函數 f(x)的圖象( 。
A.關于直線x=$\frac{π}{12}$對稱B.關于直線x=$\frac{5π}{12}$對稱
C.關于點($\frac{π}{12}$,0)對稱D.關于點($\frac{5π}{12}$,0)對稱

分析 由題意根據函數y=Asin(ωx+φ)的圖象變換規(guī)律可求sin(2x+$\frac{2π}{3}$+φ)=sin(2x-$\frac{π}{2}$),結合范圍可求φ,進而可求f(x)函數解析式,利用正弦函數的圖象和性質逐一判斷各個選項即可得解.

解答 解:函數f(x)=sin(2x+φ)(|φ|<π)的圖象向左平移$\frac{π}{3}$個單位后,得到函數y=sin[2(x+$\frac{π}{3}$)+φ]=sin(2x+$\frac{2π}{3}$+φ)的圖象,
再根據所得到的圖象對應函數為g(x)=-cos2x,
可得:sin(2x+$\frac{2π}{3}$+φ)=-cos2x=sin(2x-$\frac{π}{2}$),
可得:$\frac{2π}{3}$+φ=-$\frac{π}{2}$+2kπ,k∈Z,或$\frac{2π}{3}$+φ=π-(-$\frac{π}{2}$)+2kπ,k∈Z,
解得:φ=2kπ-$\frac{7π}{6}$,或2kπ+$\frac{5π}{6}$,k∈Z,
因為:|φ|<π,
所以:φ=$\frac{5π}{6}$,f(x)=sin(2x+$\frac{5π}{6}$),
對于A,由于sin(2×$\frac{π}{12}$+$\frac{5π}{6}$)=0≠±1,故錯誤;
對于B,由于sin(2×$\frac{5π}{12}$+$\frac{5π}{6}$)≠±1,故錯誤;
對于C,由于sin(2×$\frac{π}{12}$+$\frac{5π}{6}$)=0,故正確;
對于C,由于sin(2×$\frac{5π}{12}$+$\frac{5π}{6}$)≠0,故錯誤;
故選:C.

點評 本題主要考查了函數y=Asin(ωx+φ)的圖象變換,正弦函數的圖象和性質的應用,考查了數形結合思想和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(1)求拋物線C的方程;
(2)設直線l為拋物線C有且只有一個公共點,且l∥MN,點P在直線l上運動,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值,并判斷此時點P與以MN為直徑的圓的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.定義函數F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),設函數f(x)=-x2+2x+4,g(x)=x+2(x∈R)函數F(f(x),g(x))的最大值與零點之和為( 。
A.4B.6C.$4-2\sqrt{5}$D.$2\sqrt{5}+2$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知F為拋物線C:y2=5x的焦點,點A(3,1),M是拋物線C上的動點,當|MA|+|MF|取最小值$\frac{17}{4}$時,
點M的坐標為($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知函數f(x)=$\frac{{{e^x}-m}}{{{e^x}+1}}$+mx是定義在R上的奇函數,則實數m=1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知實數x,y滿足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-4}$的最大值為$\frac{5}{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知等比數列{an}的公比為正數,且a4a8=2a52,a2=1,則a10=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.同時滿足下列兩個性質的函數f(x)稱為“H函數”:
①函數f(x)在定義域上是單調函數;
②函數f(x)在定義域內存在區(qū)間[a,b],使得f(x)在[a,b]的值域也為[a,b].
(1)判斷函數y=x3是否為“H函數”,若不是,請說明理由;若是,求滿足條件②的區(qū)間[a,b]中端點a,b的值
(2)若函數y=lgx-t是“H函數”,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.在平面直角坐標系xOy中,以坐標原點O為極點,x軸的非負半軸為極軸,建立極坐標系.曲線C的極坐標方程是ρ=4cosθ(0$≤θ≤\frac{π}{2}$),直線l的參數方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t為參數).
(1)求直線l的直角坐標方程和曲線C的參數方程;
(2)求曲線C上的動點M到直線l的距離的范圍.

查看答案和解析>>

同步練習冊答案