A. | (2ln3-4,+∞) | B. | (-∞,2ln3-4) | C. | (-4,+∞) | D. | (-∞,-4) |
分析 令f(x)=x得出m=2lnx-x-$\frac{3}{x}$,根據(jù)導(dǎo)數(shù)的性質(zhì)求出m的范圍,根據(jù)根的個(gè)數(shù)判斷m的范圍.
解答 解:∵關(guān)于x的方程f(f(x))=x有解,
∴方程f(x)=x有解,
令f(x)=x得m=2lnx-x-$\frac{3}{x}$,
令g(x)=2lnx-x-$\frac{3}{x}$,則g′(x)=$\frac{2}{x}-1+\frac{3}{{x}^{2}}$=$\frac{-{x}^{2}+2x+3}{{x}^{2}}$(x>0),
令g′(x)>0得0<x<3,令g′(x)<0得x>3,
∴g(x)在(0,3)上單調(diào)遞增,在(3,+∞)上單調(diào)遞減,
∴當(dāng)x=3時(shí),g(x)取得最大值g(3)=2ln3-4,
∴m≤2ln3-4.
若m=2ln3-4,則g(x)=m只有一解x=3,
∵f(f(x))=x,∴f(x)=3.
∵f′(x)=$\frac{2}{x}$+$\frac{3}{{x}^{2}}$>0,
∴f(x)是增函數(shù),
∴f(x)=3最多只有一解,不符合題意;
∴m<2ln3-4.
故選B.
點(diǎn)評 本題考查了方程根的個(gè)數(shù)與函數(shù)值域的關(guān)系,函數(shù)的單調(diào)性與最值的計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$或$\frac{3π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com