【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,是線段上的動點.

1)試確定點的位置,使平面,并說明理由;

2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.

【答案】1是線段的中點,理由見解析 2

【解析】

1)當是線段的中點時,平面.連結(jié),交,連結(jié),利用三角形中位線定理能夠證明平面

2)法一:過點作平面與平面的交線,過點,過,連結(jié),由已知條件推導出是平面與平面所成銳二面角的平面角,由此能求出所求二面角的余弦值.

法二:分別以的方向為軸,建立空間直角坐標系,利用向量法能求出平面與平面所成銳二面角的余弦值.

解:(1)當是線段的中點時,平面.

證明如下:

連結(jié),交,連結(jié),

由于分別是,的中點,所以,

由于平面,又平面,

所以平面.

2)方法1:過點作平面與平面的交線

由于平面,可知

過點,

因為平面平面,

所以平面,則平面平面,

所以平面,

,連結(jié),則直線平面,

所以,

是平面與平面所成銳二面角的平面角.

設(shè),則,,

,則,

所以,即所求二面角的余弦值為.

方法2

因為平面平面,,所以平面,

可知兩兩垂直,分別以的方向為軸,建立空間直角坐標系.

設(shè),則,,,設(shè)平面的法向量,

所以

,得平面的一個法向量,

取平面的法向量,

故平面與平面所成銳二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距等于,短軸與長軸的長度比等于.

(1)求橢圓的方程;

(2)設(shè)點在橢圓上,過作兩直線,分別交橢圓于另外兩點,當的傾斜角互為補角時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:①若線性回歸方程為,則當變量增加一個單位時,一定增加3個單位;②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不會改變;③線性回歸直線方程必過點;④抽簽法屬于簡單隨機抽樣;其中錯誤的說法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018115日至10日,首屆中國國際進口博覽會在國家會展中心(上海)舉行,吸引過來58個“一帶一路”沿線國家的超過1000多家企業(yè)參展,成為共建“一帶一路”的又一個重要支撐。某企業(yè)為了參加這次盛會,提升行業(yè)競爭力,加大了科技投入;該企業(yè)連續(xù)6年來得科技投入(百萬元)與收益(百萬元)的數(shù)據(jù)統(tǒng)計如下:

根據(jù)散點圖的特點,甲認為樣本點分布在指數(shù)曲線的周圍,據(jù)此他對數(shù)據(jù)進行了一些初步處理,如下表:

其中,

(1)()請根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));

)根據(jù)所建立回歸方程,若該企業(yè)想在下一年的收益達到2億,則科技投入的費用至少要多少(其中)?

(2)乙認為樣本點分布在二次曲線的周圍,并計算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲乙兩位員工所建立的模型,誰的擬合效果更好.

附:對于一組數(shù)據(jù),……,其回歸直線方程的斜率和截距的最小二乘估計分別為,,相關(guān)指數(shù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二理科8班共有50名學生參加學業(yè)水平模擬考試,成績(單位:分,滿分100分)大于或等于90分的為優(yōu)秀,其中語文成績近似服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如圖.

(I)這50名學生中本次考試語文、數(shù)學成績優(yōu)秀的大約各有多少人?

(Ⅱ)如果語文和數(shù)學兩科成績都優(yōu)秀的共有4人,從語文優(yōu)秀或數(shù)學優(yōu)秀的這些同學中隨機抽取3人,設(shè)3人中兩科都優(yōu)秀的有人,求的分布列和數(shù)學期望;

(Ⅲ)根據(jù)(I)(Ⅱ)的數(shù)據(jù),是否有99%以上的把握認為語文成績優(yōu)秀的同學,數(shù)學成績也優(yōu)秀?

附:①若~,則,

;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x),x∈[1,+∞),數(shù)列{an}滿足

①函數(shù)f(x)是增函數(shù);

②數(shù)列{an}是遞增數(shù)列.

寫出一個滿足①的函數(shù)f(x)的解析式______

寫出一個滿足②但不滿足①的函數(shù)f(x)的解析式______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,且交于點上任意一點.

1)求證;

2)已知二面角的余弦值為,若的中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,是拋物線上不同兩點,且(其中是坐標原點),直線交于點,線段的中點為.

(Ⅰ)求拋物線的準線方程;

(Ⅱ)求證:直線軸平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次公里的自行車個人賽中,25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:

(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);

(2)若從總體中選取一個樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.

查看答案和解析>>

同步練習冊答案