【題目】某校高二理科8班共有50名學生參加學業(yè)水平模擬考試,成績(單位:分,滿分100分)大于或等于90分的為優(yōu)秀,其中語文成績近似服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如圖.

(I)這50名學生中本次考試語文、數(shù)學成績優(yōu)秀的大約各有多少人?

(Ⅱ)如果語文和數(shù)學兩科成績都優(yōu)秀的共有4人,從語文優(yōu)秀或數(shù)學優(yōu)秀的這些同學中隨機抽取3人,設(shè)3人中兩科都優(yōu)秀的有人,求的分布列和數(shù)學期望;

(Ⅲ)根據(jù)(I)(Ⅱ)的數(shù)據(jù),是否有99%以上的把握認為語文成績優(yōu)秀的同學,數(shù)學成績也優(yōu)秀?

附:①若~,則,;

;

【答案】(Ⅰ) 語文成績優(yōu)秀的同學有8人,數(shù)學成績優(yōu)秀的同學有10人. (Ⅱ)見解析.( Ⅲ) 沒有99%以上的把握認為語文成績優(yōu)秀的同學,數(shù)學成績也優(yōu)秀.

【解析】

(I)語文成績服從正態(tài)分布,根據(jù)正態(tài)分布的 原則可得語文成績優(yōu)秀的概率及人數(shù);根據(jù)數(shù)學成績的頻率分布直方圖可以計算數(shù)學成績優(yōu)秀的概率及人數(shù);(Ⅱ)語文和數(shù)學兩科成績都優(yōu)秀的共有4人,則語文單科優(yōu)秀的4人,數(shù)學單科優(yōu)秀的6人,即單科優(yōu)秀的共10人,隨機抽取3人,3人中兩科都優(yōu)秀的可能為0、1、2、3四種情況,服從超幾何分布,利用概率公式分別求出每種情況的概率,即可寫出X的分布列及數(shù)學期望;(Ⅲ)先填寫列聯(lián)表,利用公式求出 的值比較它與6.635的大小即可。

(Ⅰ)∵語文成績服從正態(tài)分布,

∴語文成績優(yōu)秀的概率為

數(shù)學成績優(yōu)秀的概率為,

∴語文成績優(yōu)秀的同學有人,

數(shù)學成績優(yōu)秀的同學有人.

(Ⅱ)語文數(shù)學兩科都優(yōu)秀的有4人,單科優(yōu)秀的有10人,

的所有可能取值為0,1,2,3,

,

,,

的分布列為:

.

(Ⅲ)列聯(lián)表:

.

∴沒有99%以上的把握認為語文成績優(yōu)秀的同學,數(shù)學成績也優(yōu)秀.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,都是邊長為2的等邊三角形,是側(cè)棱的中點,過點作平行于的平面分別交棱、、于點、、.

(1)證明:四邊形為矩形;

(2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,,的零點:且恒成立,在區(qū)間上有最小值無最大值,則的最大值是(

A. 11B. 13C. 15D. 17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱的底面為菱形,底面,,分別為,的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面平面;

(Ⅲ)若,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個工廠在某年連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;

②通過建立的y關(guān)于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?

(均精確到0.001)

附注:①參考數(shù)據(jù):,

,

②參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,是線段上的動點.

1)試確定點的位置,使平面,并說明理由;

2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】武漢市攝影協(xié)會準備在20201月舉辦主題為我們都是追夢人攝影圖片展,通過平常人的鏡頭記錄國強民富的幸福生活,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:

1)求頻率直方圖中的值,并根據(jù)頻率直方圖,求這100位攝影者年齡的中位數(shù);

2)為了展示不同年齡作者眼中的幸福生活,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應(yīng)作者參加講述照片背后的故事座談會.

①在答題卡上的統(tǒng)計表中填出每組相應(yīng)抽取的人數(shù):

年齡

人數(shù)

②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人中至少有1人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點處的切線;

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;

3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案