【題目】某中學(xué)利用周末組織教職員工進行了一次秋季登山健身的活動,有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,
,
,
,
,
,
等七組,其頻率分布直方圖如圖所示,已知
這組的參加者是6人.
(1)根據(jù)此頻率分布直方圖求該校參加秋季登山活動的教職工年齡的中位數(shù);
(2)已知和
這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;
(3)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為
,求
的分布列和均值.
【答案】(1)35;(2);(3)見解析.
【解析】
(1)先求出頻率分布直方圖中 矩形的高,使左右面積相等的垂直于x軸的直線所對應(yīng)的橫坐標(biāo)即為這個頻率分布直方圖的中位數(shù)。
(2)先分別求出這兩組的總?cè)藬?shù),再分兩種情況去討論,最后把得到的兩個概率相加即可。
(3)超幾何分布,X可能的值為1,2,3,分別求出相應(yīng)的概率,列出分布列,再求均值。
(1)設(shè)矩形在的高為
,
∴,
∴.
由,
∴中位數(shù)為35.
(2)記事件為“從年齡在
和
之間選出的2人中恰有1名數(shù)學(xué)教師”,
∵年齡在之間的人數(shù)為8,年齡在
之間的人數(shù)為6,
.
(3)年齡在之間的人數(shù)為6人,其中女教師4人,
∴的可能取值為1,2,3,
∵,
,
,
∴的分布列為:
1 | 2 | 3 | |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+1)2+y2=16,圓C過點B(1,0)且與圓A相切,設(shè)圓心C的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點B作兩條互相垂直的直線l1,l2,直線l1與E交于M,N兩點,直線l2與圓A交于P,Q兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求:
(1)函數(shù)的圖象在點(0,-2)處的切線方程;
(2)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為
軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線
的極坐標(biāo)方程為
.
(1)求的直角坐標(biāo)方程;
(2)直線(
為參數(shù))與曲線
交于
兩點,與
軸交于
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做下面的游戲:有一個由兩個同軸圓柱組成的有蓋容器,如圖,里面的實心圓柱底面半徑為,外面的圓柱面的底面半徑為
,容器的高為
。在容器內(nèi)放入
個半徑為
且質(zhì)地相同的小球,其中紅、黃、藍(lán)色各
個,隨意翻動容器,然后將容器直立在桌面上。當(dāng)小球全部停止后,如果有兩個顏色相同的小球相鄰,則甲勝,否則乙勝。那么,甲勝的概率為()。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于直角在定平面
內(nèi)的射影有如下判斷:①可能是的0°角;②可能是銳角;③可能是直角;④可能是鈍角;⑤可能是180°的角;其中正確判斷的序號是( )
A.②③⑤B.①②③C.①④⑤D.①②③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為4,M是AD的中點,動點N在正方形ABCD的內(nèi)部或其邊界移動,并且滿足,則
的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在區(qū)間
上是增函數(shù).
(1)求實數(shù)的值組成的集合
;
(2)設(shè)關(guān)于的方程
的兩個非零實根為
、
.試問:是否存在實數(shù)
,使得不等式
對任意
及
恒成立?若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com