【題目】已知在區(qū)間上是增函數(shù).
(1)求實(shí)數(shù)的值組成的集合;
(2)設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為、.試問:是否存在實(shí)數(shù),使得不等式對(duì)任意及 恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
【答案】(1)實(shí)數(shù)a的值組成的集合;
(2)存在實(shí)數(shù),使得不等式對(duì)任意及 恒成立.
【解析】
試題(1)先求出函數(shù)的導(dǎo)數(shù),將條件在區(qū)間上為增函數(shù)這一條件轉(zhuǎn)化為在區(qū)間上恒成立,結(jié)合二次函數(shù)的圖象得到,從而解出實(shí)數(shù)的取值范圍;(2)先將方程轉(zhuǎn)化為一元二次方程,結(jié)合韋達(dá)定理得到與,然后利用
將用參數(shù)進(jìn)行表示,進(jìn)而得到不等式對(duì)任意
及恒成立,等價(jià)轉(zhuǎn)化為對(duì)任意恒成立,將不等式
轉(zhuǎn)化為以為自變量的一次函數(shù)不等式恒成立,只需考慮相應(yīng)的端點(diǎn)值即可,從而解出參數(shù)的取值范圍.
試題解析:(1)因?yàn)?/span>在區(qū)間上是增函數(shù),
所以,在區(qū)間上恒成立,
,
所以,實(shí)數(shù)的值組成的集合;
(2)由 得,即,
因?yàn)榉匠?/span>,即的兩個(gè)非零實(shí)根為、,
、是方程兩個(gè)非零實(shí)根,于是,,
,
,,
設(shè),,
則,
若對(duì)任意及恒成立,
則,解得或,
因此,存在實(shí)數(shù)或,使得不等式對(duì)任意及恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動(dòng),有Ⅳ人參加,現(xiàn)將所有參加者按年齡情況分為,,,,,,等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6人.
(1)根據(jù)此頻率分布直方圖求該校參加秋季登山活動(dòng)的教職工年齡的中位數(shù);
(2)已知和這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中恰有1名數(shù)學(xué)老師的概率;
(3)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為,求的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:的焦點(diǎn)坐標(biāo)為,點(diǎn),過點(diǎn)P作直線l交拋物線C于A,B兩點(diǎn),過A,B分別作拋物線C的切線,兩切線交于點(diǎn)Q,則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過隨機(jī)詢問名不同性別的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | |
愛好 | 40 | 20 |
不愛好 | 20 | 30 |
由算得,
參照附表,以下不正確的有( )
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.有以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求在圖所示的的方格中“圈”的個(gè)數(shù).在這里,一條封閉的折線叫做圈,如果這條折線的邊均由方格的邊組成,且折線經(jīng)過的任意一個(gè)方格頂點(diǎn)都只與折線的兩條邊相連.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若方程f(x)﹣m=0恰有兩個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面是邊長(zhǎng)為的菱形,,點(diǎn)E是棱BC的中點(diǎn),,點(diǎn)P在平面ABCD的射影為O,F(xiàn)為棱PA上一點(diǎn).
1求證:平面平面BCF;
2若平面PDE,,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額(單位:千元),網(wǎng)購(gòu)次數(shù)和支付方式等進(jìn)行了問卷調(diào)査.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購(gòu)消費(fèi)金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計(jì)該社區(qū)居民最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額的中位數(shù);
(2)將網(wǎng)購(gòu)消費(fèi)金額在20千元以上者稱為“網(wǎng)購(gòu)迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購(gòu)迷與性別有關(guān)系”;
男 | 女 | 合計(jì) | |
網(wǎng)購(gòu)迷 | 20 | ||
非網(wǎng)購(gòu)迷 | 45 | ||
合計(jì) | 100 |
(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購(gòu)采用的支付方式相互獨(dú)立,兩人網(wǎng)購(gòu)時(shí)間與次數(shù)也互不. 影響.統(tǒng)計(jì)最近一年來(lái)兩人網(wǎng)購(gòu)的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購(gòu)總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購(gòu)2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.
附:觀測(cè)值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com