【題目】如圖,在三棱錐中,平面ABC,平面平面PBC,,

1)證明:平面PBC;

2)求點C到平面PBA的距離.

【答案】(1)證明見解析;(2)

【解析】

1)由平面ABC,可得,通過取中點,由平面平面PBC,可得平面PAC,從而,然后根據(jù)線面垂直的判定定理即可證得平面PBC;

2)根據(jù)平面ABC可得平面平面ABC,過點過點C,交ABM,則即為所求,在內根據(jù)等面積法即可求出.

1)證明:平面ABC,平面ABC,

PC的中點D,連接BD,

平面平面PBC,平面平面,平面PBC

平面PAC.又平面PAC,

,平面PBC

2)易知平面平面ABCAB為交線,在中,過點C,交ABM,則平面PBA

,,

C到平面PBA的距離為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】區(qū)塊鏈技術被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術區(qū)塊鏈作為構造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個)

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i1,2,,n)的最小二乘法估計公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結果即可,不必說明理由)

2)根據(jù)(1)的結果,求y關于x的回歸方程(結果精確到小數(shù)點后第三位);

3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且點在橢圓.

1)求橢圓的標準方程;

2)過點的直線與橢圓交于兩點,在直線上存在點,使三角形為正三角形,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上任意一點到其兩個焦點的距離之和等于,且圓經(jīng)過橢圓的焦點.

1)求橢圓的方程;

2)如圖,若直線與圓O相切,且與橢圓相交于A,B兩點,直線平行且與橢圓相切于點MO,M位于直線的兩側).記,的面積分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a312,a2+a418,nN*.

1)求數(shù)列{an}的通項公式;

2)求a3+a6+a9++a3n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,有下列4個命題:

,則的圖象關于直線對稱;

的圖象關于直線對稱;

為偶函數(shù),且,則的圖象關于直線對稱;

為奇函數(shù),且,則的圖象關于直線對稱.

其中正確的命題為 .(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,是等邊三角形,點在棱上,平面平面.

1)求證:平面平面

2)若,求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市208年抽樣100戶居民的月均用電量(單位:千瓦時),以,,,,分組,得到如下頻率分布表:

分組

頻數(shù)

頻率

0.04

19

0.22

25

0.25

15

0.15

10

5

0.05

1)求表中的值,并估計2018年該市居民月均用電量的中位數(shù);

2)該城市最近十年的居民月均用電量逐年上升,以當年居民月均用電量的中位數(shù)(單位:千瓦時)作為統(tǒng)計數(shù)據(jù),下圖是部分數(shù)據(jù)的折線圖.

由折線圖看出,可用線性回歸模型擬合與年份的關系.

①為簡化運算,對以上數(shù)據(jù)進行預處理,令,,請你在答題卡上完成數(shù)據(jù)預處理表;

②建立關于的線性回歸方程,預測2020年該市居民月均用電量的中位數(shù).

附:回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年第十三屆女排世界杯共12支參賽球隊,比賽賽制釆取單循環(huán)方式,即每支球隊進行11場比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取53勝制):比賽中以3—03—1取勝的球隊積3分,負隊積0分;而在比賽中以3—2取勝的球隊積2分,負隊積1分.9輪過后,積分榜上的前2名分別為中國隊和美國隊,中國隊積26分,美國隊積22分.第10輪中國隊對抗塞爾維亞隊,設每局比賽中國隊取勝的概率為

1)第10輪比賽中,記中國隊3—1取勝的概率為,求的最大值點

2)以(1)中的作為的值.

i)在第10輪比賽中,中國隊所得積分為,求的分布列;

)已知第10輪美國隊積3分,判斷中國隊能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結果如何,中國隊積分最多)?若能,求出相應的概率;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案