(三角函數(shù)中的圖象重合對(duì)稱問題)設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度后,所得的圖象與原圖象重合,則ω的最小值等于
 
,如果所得圖象關(guān)于x軸對(duì)稱,則ω的最小值等于
 
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的平移和三角函數(shù)的對(duì)稱性與周期之間的關(guān)系即可得到結(jié)論.
解答: 解:將y=f(x)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度后,所得的圖象與原圖象重合,
則函數(shù)的周期滿足nT=
π
3
,n∈Z且n>0,
2πn
ω
=
π
3

則ω=6n,
∴當(dāng)n=1時(shí),ω最小為6,
ω的最小值等于6
故答案為:6
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象重合,得到平移長(zhǎng)度和周期的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線x-y+1=0與圓C:(x-a)2+y2=2有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A、[-3,-1]
B、[-1,3]
C、[-3,1]
D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x-2)2+(y-3)2=1.圓C2:(x-3)2+(y-4)2=16.M,N,分別是圓C1,C2上的動(dòng)點(diǎn).P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為(  )
A、5
2
-5
B、
17
-1
C、6-2
2
D、
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,若4a1,a3,2a2成等差數(shù)列,則公比q=( 。
A、1B、1或2
C、2或-1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,如圖,四邊形ABCD是平行四邊形,點(diǎn)E是線段AB的中點(diǎn),AC∩BD=O,點(diǎn)P是平面ABCD外一點(diǎn),PA=PC,PB=PD,BD⊥EO.
求證:(Ⅰ)EO∥平面PBC.
(Ⅱ)BC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾種推理過程是演繹推理的是(  )
A、某校高三1班55人,2班54人,3班52人,由此得高三所有班級(jí)的人數(shù)超過50人
B、兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C、由圓的周長(zhǎng)C=πd推測(cè)球的表面積S=πd2
D、在數(shù)列{an}中,a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,由此歸納數(shù)列{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2k),
b
=(2,-1),當(dāng)
a
,
b
共線時(shí),k=
 
,當(dāng)
a
b
垂直時(shí),k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲:函數(shù),f(x)是R上的單調(diào)遞增函數(shù);乙:?x1<x2,f(x1)<f(x2),則甲是乙的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算log28 
1
3
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案