2.如圖,在直三棱柱ABC-A1B1C1中,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1,BC的中點.
(Ⅰ)求證:平面ABE⊥平面B1BCC1;
(Ⅱ)求證:C1F∥平面ABE;
(Ⅲ)求三棱錐E-ABC的體積.

分析 (Ⅰ)由直三棱柱側棱與底面垂直可得BB1⊥AB,結合已知AB⊥BC,得到AB⊥平面B1BCC1,從而得到平面ABE⊥平面B1BCC1;
(Ⅱ)取AB的中點G,連接EG,F(xiàn)G.由三角形中位線定理可得GF∥EC1,且GF=EC1,得到四邊形FGEC1為平行四邊形,進一步得到C1F∥EG.由線面平行的判定得到C1F∥平面ABE;
(Ⅲ)由已知求解直角三角形得到AB,求得底面積,代入三棱錐體積公式求得三棱錐E-ABC的體積.

解答 (Ⅰ)證明:在直三棱柱ABC-A1B1C1中,
∵BB1⊥底面ABC,∴BB1⊥AB.
又∵AB⊥BC,BB1∩BC=B,∴AB⊥平面B1BCC1,
又AB?平面ABE,∴平面ABE⊥平面B1BCC1;
(Ⅱ)證明:取AB的中點G,連接EG,F(xiàn)G.
∵E,F(xiàn),G分別是A1C1,BC,AB的中點,
∴FG∥AC,且$FG=\frac{1}{2}AC$,$E{C_1}=\frac{1}{2}{A_1}{C_1}$.
∵AC∥A1C1,且AC=A1C1,∴GF∥EC1,且GF=EC1
∴四邊形FGEC1為平行四邊形,
∴C1F∥EG.
又∵EG?平面ABE,C1F?平面ABE,∴C1F∥平面ABE;
(Ⅲ)解:∵AA1=AC=2,BC=1,AB⊥BC,∴$AB=\sqrt{A{C^2}-B{C^2}}=\sqrt{3}$.
∴三棱錐E-ABC的體積$V=\frac{1}{3}{S_{△ABC}}•A{A_1}=\frac{1}{3}×\frac{1}{2}×\sqrt{3}×1×2=\frac{{\sqrt{3}}}{3}$.

點評 本題考查直線與平面平行、平面與平面垂直的判定,考查棱錐體積的求法,靈活運用中點推出線線平行是解答該題的關鍵,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={(x,y)|y=x2},B={(x,y)|y=$\sqrt{x}$},則A∩B=( 。
A.{0,1}B.{0}C.{(1,1)}D.{(0,0),(1,1)}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某高三文科班有A,B兩個學習小組,每組8人,在剛剛進行的雙基考試中這兩組學生歷史考試的成績如圖莖葉圖所示:
(1)這兩組學生歷史成績的中位數(shù)和平均數(shù)分別是多少?
(2)歷史老師想要在這兩個學習小組中選擇一個小組進行獎勵,請問選擇哪個小組比較好,只說明結論,不用說明理由;
(3)若成績在90分以上(包括90分)的同學視為優(yōu)秀,則從這兩組歷史成績優(yōu)秀的學生中抽取2人,求至少有一人來自B學習小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設集合A={1,2,…n},n≥4,n∈N*,若X⊆A,且2≤Card(X)≤n-2,(Card(X)表示集合X中的元素個數(shù))令aX表示X中最大數(shù)與最小數(shù)之和,則
(1)當n=5時,集合X的個數(shù)為20
(2)所有aX的平均值為n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若$\frac{2+ai}{1+i}$=b+i,則復數(shù)a+bi在復平面內表示的點所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在($\frac{1}{\root{3}{x}}$+2x$\sqrt{x}$)7的展開式中,x5的系數(shù)為560.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.2015年12月10日,我國科學家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫(yī)學獎.以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標準療法.目前,國內青蒿人工種植發(fā)展迅速.調查表明,人工種植的青蒿素長勢與海拔高度、土壤酸堿度、空氣濕度的指標有很強的相關性.現(xiàn)將這三項指標分別記為x,y,z,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標ω=x+y+z的值評定人工種植的青蒿素的長勢等級;若能ω≥4,則長勢為一級;若2≤ω≤3,則長勢為二級;若0≤ω≤1,則長勢為三級.為了了解目前人工種植的青蒿素的長勢情況.研究人員隨即抽取了10塊青蒿人工種植地,得到如表結果;
種植地編號A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
種植地編號A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數(shù);
(2)從長勢等級為一級的青蒿人工種植地中隨機抽取兩個,求這兩個人工種植地的綜合指標ω均為4的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上除長軸端點外的任一點,G為△F1PF2內一點,滿足3$\overrightarrow{PG}$=$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$,△F1PF2的內心為I,且有$\overrightarrow{IG}$=λ$\overrightarrow{{F}_{1}{F}_{2}}$(其中λ為實數(shù)),則橢圓C的離心率e=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),若$\frac{{|f(lnx)-f(ln\frac{1}{x})|}}{2}<f(1)$,則f(x)的取值范圍是(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

同步練習冊答案