已知橢圓C的兩個焦點是(0,-)和(0,),并且經(jīng)過點,拋物線E的頂點在坐標原點,焦點F恰好是橢圓C的右頂點.
(Ⅰ)求橢圓C和拋物線E的標準方程;
(Ⅱ)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.

(I)橢圓C的標準方程為;拋物線E的標準方程為;(Ⅱ)最小值為16.

解析試題分析:(I)由題意得c=,,從而=1,橢圓C的標準方程為.該橢圓右頂點的坐標為(1,0),即拋物線的焦點為(1,0),所以,拋物線E的標準方程為.(Ⅱ)設l1的方程:,l2的方程,,,.注意,且它們交于點,所以可將作如下變形: ==||·||+||·||,這樣先將||·||+||·||用表示出來,再利用韋達定理用表示,從而求得其最小值.
試題解析:(I)設橢圓的標準方程為(a>b>0),焦距為2c,
則由題意得c=,,
∴a=2,=1,
∴橢圓C的標準方程為.                  4分
∴右頂點F的坐標為(1,0).
設拋物線E的標準方程為,
,
∴拋物線E的標準方程為.                  6分
(Ⅱ)設l1的方程:,l2的方程
,,,
 消去y得:,
∴ x1+x2=2+,x1x2=1.
消去y得:x2-(4k2+2)x+1=0,
∴x3+x4=4k2+2,x3x4=1,                    9分

=
=||·||+||·||
=|x1+1|·|x2+1|+|x3+1|·|x4+1|
=(x1x2+x1+x2+1)+(x3x4+x3+x4+1)
=8+
≥8+
=16.
當且僅當即k=±1時,有最小值16.        13分
考點:1、橢圓與拋物線;2、直線與圓錐曲線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知定點,曲線C是使為定值的點的軌跡,曲線過點.
(1)求曲線的方程;
(2)直線過點,且與曲線交于,當的面積取得最大值時,求直線的方程;
(3)設點是曲線上除長軸端點外的任一點,連接、,設的角平分線交曲線的長軸于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知點,過點的直線與過點的直線相交于點,設直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓經(jīng)過點,其左、右頂點分別是、,左、右焦點分別是,(異于、)是橢圓上的動點,連接交直線、兩點,若成等比數(shù)列.

(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的右頂點為A(2,0),點P(2e,)在橢圓上(e為橢圓的離心率).

(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓兩焦點坐標分別為,,一個頂點為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在斜率為的直線,使直線與橢圓交于不同的兩點,滿足. 若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知過點的橢圓的右焦點為,過焦點且與軸不重合的直線與橢圓交于,兩點,點關于坐標原點的對稱點為,直線,分別交橢圓的右準線,兩點.

(1)求橢圓的標準方程;
(2)若點的坐標為,試求直線的方程;
(3)記,兩點的縱坐標分別為,試問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為

(1)求拋物線的方程;
(2)當的角平分線垂直軸時,求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校同學設計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大?

查看答案和解析>>

同步練習冊答案