分析 (1)證明MD⊥PB,AP⊥PB,可證得AP⊥平面PBC,推出AP⊥BC,AC⊥BC,即可證明BC⊥平面APC.
(2)說(shuō)明MD是三棱錐D-BCM的高,求出三角形BCD的面積,然后求解三棱錐D-BCM的體積.
解答 解:(1)由△PMB為正三角形得MD⊥PB,由M為AB的中點(diǎn),
得MD∥AP,所以AP⊥PB,可證得AP⊥平面PBC,
所以AP⊥BC,又AC⊥BC,所以得BC⊥平面APC.
(2)由題意可知,MD⊥平面PBC,∴MD是三棱錐D-BCM的高,$BM=\frac{1}{2}AB=10,DM=\frac{{\sqrt{3}}}{2}BM=5\sqrt{3},BD=\frac{1}{2}PB=5$,
在直角三角形ABC中,M為斜邊AB的中點(diǎn),$CM=\frac{1}{2}AB=10$,
在直角三角形CDM中,$CD=\sqrt{C{M^2}-D{M^2}}=5$,
∴三角形BCD為等腰三角形,底邊BC上的高為4,${V_{M-DBC}}=\frac{1}{3}×\frac{1}{2}×6×4×5\sqrt{3}=20\sqrt{3}$.
點(diǎn)評(píng) 本題考查幾何體的體積的求法,直線與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$x±2y=0 | B. | 2x±$\sqrt{10}$y=0 | C. | $\sqrt{6}$x±2y=0 | D. | 2x±$\sqrt{6}$y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{3}$ | C. | -$\frac{1}{9}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com