A. | 1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $-\frac{1}{6}$ |
分析 作出兩個曲線的圖象,求出它們的交點(diǎn),由此可得所求面積為函數(shù)x-x2在區(qū)間[0,1]上的定積分的值,再用定積分計算公式加以計算,即可得到本題答案.
解答 解:∵曲線y=x3和曲線y=x的交點(diǎn)為A(1,1)和原點(diǎn)O(0,0)
∴由定積分的幾何意義,可得所求圖形的面積為
S=${∫}_{0}^{1}(x-{x}^{2})dx$=$(\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{1}{2}-\frac{1}{3}$=$\frac{1}{6}$.
故選:C.
點(diǎn)評 本題求兩條曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計算公式等知識,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}i$ | B. | $\frac{1}{2}i$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1<a<1 | B. | a≤-$\frac{3}{5}$或a≥1 | C. | -1<a≤-$\frac{3}{5}$ | D. | -$\frac{3}{5}$≤a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$-$\frac{i}{2}$ | B. | -$\frac{1}{2}$+$\frac{i}{2}$ | C. | $\frac{1}{2}$-$\frac{i}{2}$ | D. | $\frac{1}{2}$+$\frac{i}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com