精英家教網 > 高中數學 > 題目詳情
2.函數f(x)=sinx+cos(x+$\frac{π}{6}$)的最小值和最小正周期分別是( 。
A.-$\sqrt{3}$,πB.-1,πC.-$\sqrt{3}$,2πD.-1,2π

分析 化簡函數f(x),從而求出函數的最小值和最小正周期.

解答 解:函數f(x)=sinx+cos(x+$\frac{π}{6}$)=sinx+$\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx=sin(x+$\frac{π}{3}$),
故函數的最小正周期等于$\frac{2π}{1}$=2π,
當x=2kπ-$\frac{π}{2}$,k∈z時,函數有最小值等于-1.
故選:D.

點評 本題考查了三角函數問題,考查求最小值和最小正周期,熟練掌握三角函數的性質是解題的關鍵,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

12.已知動圓過定點F(0,1),且與定直線y=-1相切.
(Ⅰ)求動圓圓心M所在曲線C的方程;
(Ⅱ)直線l經過曲線C上的點P(x0,y0),且與曲線C在點P的切線垂直,l與曲線C的另一個交點為Q.
①當x0=$\sqrt{2}$時,求△OPQ的面積;
②當點P在曲線C上移動時,求線段PQ中點N的軌跡方程以及點N到x軸的最短距離.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.對于平面α,直線m,n給出下列命題
①若m∥n,則m,n與α所成的角相等.
②若m∥n,n∥α,則m∥α.
③若m⊥α,m⊥n,則n⊥α
④若m與n異面且m∥α,則n與α相交,
其中正確命題個數有(  )個.
A.4B.2C.3D.1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.下列角中與-200°角終邊相同角( 。
A.200°B.-160°C.160°D.20°

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.馬云同學向某銀行貸款M萬元,用于購買某件商品,貸款的月利率為5%(按復利計算),按照還款合同,馬云同學每個月都還款x萬元,20個月還清,則下列關系式正確的是( 。
A.20x=MB.20x=M(1+5%)20C.20x<M(1+5%)20D.20x>M(1+5%)20

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.如圖①所示,四邊形ABCD為等腰梯形,AD∥BC,且AD=$\frac{1}{3}$BC=a,∠BAD=135°,AE⊥BC于點E,F為BE的中點.將△ABE沿著AE折起至△AB′E的位置,得到如圖②所示的四棱錐B′-ADCE.
(1)求證:AF∥B′CD平面;
(2)若平面AB′E⊥平面AECD,三棱錐A-B′ED的體積為$\frac{9}{16}$,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.設f(x)=lnx+$\frac{1}{x}$,則f(sin$\frac{π}{5}$)與f(cos$\frac{π}{5}$)的大小關系是( 。
A.f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$)B.f(sin$\frac{π}{5}$)<f(cos$\frac{π}{5}$)C.f(sin$\frac{π}{5}$)=f(cos$\frac{π}{5}$)D.大小不確定

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知橢圓C的中心在坐標原點,焦點在x軸上,離心率e=$\frac{1}{2}$,且橢圓C經過點P(2,3),過橢圓C的左焦點F1且不與坐標軸垂直的直線交橢圓C于A,B兩點.
(1)求橢圓C的方程;
(2)設線段AB的垂直平分線與x軸交于點G,求△PF1G的面積S的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知各項均為正數的等比數列{an}滿足a3•a5=64,a2=2,則a1=(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案