【題目】已知橢圓,過(guò)原點(diǎn)O且斜率不為0的直線與橢圓C交于PQ兩點(diǎn).

1)若為橢圓C的一個(gè)焦點(diǎn),求橢圓C的標(biāo)準(zhǔn)方程;

2)若經(jīng)過(guò)橢圓C的右焦點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線OP的方程,若不能,說(shuō)明理由.

【答案】1;(2

【解析】

1)變形,根據(jù)的關(guān)系求解即可;

2)設(shè)直線的方程為,代入橢圓方程,根據(jù)韋達(dá)定理及向量的坐標(biāo)運(yùn)算,求得點(diǎn)坐標(biāo),代入橢圓方程,即可求得的值.

解:(1)由已知得,則,解得

所以橢圓C的標(biāo)準(zhǔn)方程為;

2)設(shè)
當(dāng)直線的斜率為0時(shí),三點(diǎn)共線,不符合題意,
所以可設(shè)直線的方程為,
聯(lián)立,可得,
顯然,,則
若四邊形為平行四邊形,則
所以,,
因?yàn)?/span>在橢圓上,所以,即

解得,
所以四邊形能為平行四邊行,此時(shí)直線的方程為,
綜上所述,四邊形能為平行四邊形,此時(shí)直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成6組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);

2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務(wù)產(chǎn)品和活期資金管理服務(wù)產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財(cái)富通”,京東旗下“京東小金庫(kù)”.為了調(diào)查廣大市民理財(cái)產(chǎn)品的選擇情況,隨機(jī)抽取1100名使用理財(cái)產(chǎn)品的市民,按照使用理財(cái)產(chǎn)品的情況統(tǒng)計(jì)得到如下頻數(shù)分布表:

分組

頻數(shù)(單位:名)

使用“余額寶”

使用“財(cái)富通”

使用“京東小金庫(kù)”

40

使用其他理財(cái)產(chǎn)品

60

合計(jì)

1100

已知這1100名市民中,使用“余額寶”的人比使用“財(cái)富通”的人多200名.

(1)求頻數(shù)分布表中的值;

(2)已知2018年“余額寶”的平均年化收益率為,“財(cái)富通”的平均年化收益率為,“京東小金庫(kù)”的平均年化收益率為,有3名市民,每個(gè)人理財(cái)?shù)馁Y金有10000元,且分別存入“余額寶”“財(cái)富通”“京東小金庫(kù)”,求這3名市民2018年理財(cái)?shù)钠骄昊找媛剩?/span>

(3)若在1100名使用理財(cái)產(chǎn)品的市民中,從使用“余額寶”和使用“財(cái)富通”的市民中按分組用分層抽樣方法共抽取5人,然后從這5人中隨機(jī)選取2人,求“這2人都使用‘財(cái)富通’”的概率.

注:平均年化收益率,也就是我們所熟知的利率,理財(cái)產(chǎn)品“平均年化收益率為”即將100元錢(qián)存入某理財(cái)產(chǎn)品,一年可以獲得3元利息.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

)求的單調(diào)區(qū)間;

)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=(xacosxsinxgxx3ax2,aR

1)當(dāng)a1時(shí),求函數(shù)yfx)在區(qū)間(0,)上零點(diǎn)的個(gè)數(shù);

2)令Fx)=fx+gx),試討論函數(shù)yFx)極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類(lèi)制度,這是生活垃圾分類(lèi)首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類(lèi)意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.

分類(lèi)意識(shí)強(qiáng)

分類(lèi)意識(shí)弱

合計(jì)

試點(diǎn)后

試點(diǎn)前

合計(jì)

已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類(lèi)意識(shí)強(qiáng)的概率為

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類(lèi)意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說(shuō)明你的理由;

2)已知在試點(diǎn)前分類(lèi)意識(shí)強(qiáng)的戶居民中,有戶自覺(jué)垃圾分類(lèi)在年以上,現(xiàn)在從試點(diǎn)前分類(lèi)意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺(jué)垃圾分類(lèi)年限的調(diào)查,記選出自覺(jué)垃圾分類(lèi)年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.

參考公式:,其中

下面的臨界值表僅供參考

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(wx+)(w>0,)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱(chēng),則函數(shù)f(x)的解析式為(

A.f(x)=sin(2x+)B.f(x)=sin(2x-)

C.f(x)=sin(2x+)D.f(x)=sin(2x-)

查看答案和解析>>

同步練習(xí)冊(cè)答案