19.已知函數(shù)f(x)=sin2x-kcos2x的圖象關(guān)于直線x=$\frac{π}{8}$對稱,則k的值是-1.

分析 由對稱性可得f(0)=f($\frac{π}{4}$),代值解方程可得.

解答 解:∵函數(shù)f(x)=sin2x-kcos2x的圖象關(guān)于直線x=$\frac{π}{8}$對稱,
∴f(0)=f($\frac{π}{4}$),即-k=1,可得k=-1,
故答案為:-1.

點評 本題考查三角函數(shù)圖象的對稱性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}中,a1•a7=4,則a22+a62的最小值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={-1,0,1},B={x|y=x2,x∈R},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從甲、乙兩品種的棉花中各抽測了10根棉花的纖維長度(單位:mm),所得數(shù)據(jù)如圖莖葉圖.記甲、乙兩品種棉花的纖維長度的平均值分別為$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$,標(biāo)準(zhǔn)差分別為s,s,則( 。
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s>sB.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s<s
C.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s>sD.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s<s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示的程序框圖的運行結(jié)果為( 。
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為互相垂直的單位向量,則向量$\overrightarrow{a}$-$\overrightarrow$可表示為( 。
A.2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$C.2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1},{-3<x≤0}\\{1-{x}^{2}},{0<x≤3}\end{array}\right.$的定義域是{x|-3<x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}的前n項和為Sn,且${S_n}={2^n}-1$,數(shù)列{bn}滿足b1=2,bn+1=bn+an
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習(xí)冊答案