【題目】給圖中A,B,C,D,E,F六個區(qū)域進(jìn)行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
【答案】96
【解析】
通過分析題目給出的圖形,可知要完成給圖中、、、、、六個區(qū)域進(jìn)行染色,最少需要3種顏色,即同色,同色,同色,由排列知識可得該類染色方法的種數(shù);也可以4種顏色全部用上,即,,三組中有一組不同色,同樣利用排列組合知識求解該種染法的方法種數(shù),最后利用分類加法求和.
解:要完成給圖中、、、、、六個區(qū)域進(jìn)行染色,染色方法可分兩類,第一類是僅用三種顏色染色,
即同色,同色,同色,則從四種顏色中取三種顏色有種取法,三種顏色染三個區(qū)域有種染法,共種染法;
第二類是用四種顏色染色,即,,中有一組不同色,則有3種方案不同色或不同色或不同色),先從四種顏色中取兩種染同色區(qū)有種染法,剩余兩種染在不同色區(qū)有2種染法,共有種染法.
由分類加法原理得總的染色種數(shù)為種.
故答案為:96.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩圓外切于點T, PQ為的弦,直線PT、QT分別交于點R、S,分別過P、Q作的切線依次交于A、B、D、C,直線RD、SA分別交PQ于E、F。求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列個結(jié)論:
①棱長均相等的棱錐一定不是六棱錐;
②函數(shù)既不是奇函數(shù)又不是偶函數(shù);
③若函數(shù)的值域為,則實數(shù)的取值范圍是;
④若函數(shù)滿足條件,則的最小值為.
其中正確的結(jié)論的序號是:______. (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊,那么下面說法正確的是_________.
(1) 平面平面 (2)四面體的體積是
(3)二面角的正切值是 (4)與平面所成角的正弦值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右頂點分別為,左焦點為,已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點的直線與該橢圓交于兩點,且線段的中點恰為點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程;
(2)設(shè),求函數(shù)的單調(diào)區(qū)間;
(3)設(shè),求證:當(dāng)時,函數(shù)恰有2個不同零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com