已知等比數(shù)列的各項(xiàng)均為正數(shù),,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè).證明:為等差數(shù)列,并求的前項(xiàng)和.
(I);(II).
【解析】
試題分析:(I)依據(jù)已知數(shù)列為等比數(shù)列,求出首項(xiàng)和公比,根據(jù)寫出通項(xiàng)公式;(II)根據(jù)等差數(shù)列定義證明數(shù)列為等差數(shù)列,再求和.
試題解析:(Ⅰ)解:設(shè)等比數(shù)列的公比為,依題意 . 1分
因?yàn)?,,
兩式相除得 , 3分
解得 , 舍去 . 4分
所以 . 6分
所以數(shù)列的通項(xiàng)公式為 . 7分
(Ⅱ)解:由(Ⅰ)得 . 9分
因?yàn)?,
所以數(shù)列是首項(xiàng)為,公差為的等差數(shù)列. 11分
所以 . 13分
考點(diǎn):1等比數(shù)列通項(xiàng)公式;2.等差數(shù)列求和公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(14分)已知等比數(shù)列的各項(xiàng)均為正數(shù),且公比不等于1,數(shù)列對任意正整數(shù)n,均有:
成立,又。
(Ⅰ)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(Ⅱ)在數(shù)列中依次取出第1項(xiàng),第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……,組成一個新數(shù)列,求數(shù)列的前n項(xiàng)和;
(Ⅲ)當(dāng)時,比較與的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北省襄陽市四校高一下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知等比數(shù)列的各項(xiàng)均為正數(shù),公比,設(shè),,則 與的大小關(guān)系是
A. B. C. D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三第三次模擬考試數(shù)學(xué) 題型:填空題
對于數(shù)列 ,定義數(shù)列 為數(shù)列的“差數(shù)列”,若=2,的“差數(shù)列”的通項(xiàng)為,則數(shù)列的前n項(xiàng)和 =
(文)已知等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)和為 ,若,,則=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三第三次學(xué)情調(diào)查數(shù)學(xué) 題型:解答題
.已知等比數(shù)列的各項(xiàng)均為正數(shù),且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和.
(Ⅲ)設(shè),求數(shù)列{}的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知等比數(shù)列的各項(xiàng)均為正數(shù),且
(I) 求的通項(xiàng)公式
(II)令,求數(shù)列的前n項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com