1.已知(1+ax)(1-x)2的展開(kāi)式中x2的系數(shù)為5,則a等于-2.

分析 (1+ax)(1-x)2的展開(kāi)式中x2的系數(shù)為$1×C_2^2{(-1)^2}+a×C_2^1({-1})=1-2a$,構(gòu)造方程可得答案.

解答 解:因?yàn)椋?+ax)(1-x)2的展開(kāi)式中x2的系數(shù)為$1×C_2^2{(-1)^2}+a×C_2^1({-1})=1-2a$,
由題意:1-2a=5,
解得:a=-2,
故答案為:-2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二項(xiàng)式定理的應(yīng)用,方程思想,熟練掌握二項(xiàng)式展開(kāi)項(xiàng)的通項(xiàng)公式,是解答的關(guān)鍵,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(n)=sin$\frac{nπ}{6}$(n∈N*),則f(1)+f(2)+…+f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若一個(gè)三角形的平行投影仍是三角形,則下列命題:
①三角形的高線的平行投影,一定是這個(gè)三角形的平行投影的高線;
②三角形的中線的平行投影,一定是這個(gè)三角形的平行投影的中線;
③三角形的角平分線的平行投影,一定是這個(gè)三角形的平行投影的角平分線;
④三角形的中位線的平行投影,一定是這個(gè)三角形的平行投影的中位線.
其中正確的命題有( 。
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定義域?yàn)閇a2-3a-2,4]的函數(shù)f(x)是偶函數(shù),則a=1或2-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知圓C:(x-1)2+y2=2,過(guò)點(diǎn)A(-1,0)的直線l將圓C分成弧長(zhǎng)之比為1:3的兩段圓弧,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.角α終邊上有一點(diǎn)(sin$\frac{π}{3}$,cos$\frac{π}{3}$),若α>0,則α的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.角α終邊上有一點(diǎn)($\sqrt{3}$,1),若α>0,則α的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),M是橢圓上一點(diǎn),且滿足$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_2}M}$=0,
(1)求離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時(shí),點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為5$\sqrt{2}$,
①求此時(shí)橢圓的方程;
②過(guò)點(diǎn)F2作斜率為k(k≠0)直線l交橢圓于不同的兩點(diǎn)A、B,其中一點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A',則直線A'B的是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知點(diǎn)A(-1,0),B(0,1),則直線AB的方程為( 。
A.y=-x+1B.y=x-1C.y=x+1D.y=-x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案