A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | -$\frac{{\sqrt{3}}}{3}$ | D. | -$\sqrt{3}$ |
分析 作出圖形,將問題轉(zhuǎn)化為解三角形問題.
解答 解:若$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,且$\overrightarrow a$與$\overrightarrow c$的夾角為60°,$\overrightarrow a$與$\overrightarrow b$的夾角為θ,$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,
如圖,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則∠COA=60°,以O(shè)A,OB為鄰邊作平行四邊形OADB,
則 $\overrightarrow{OD}$=$\overrightarrow{a}$+$\overrightarrow$=-$\overrightarrow{c}$,∠ODB=∠AOD=120°,BD=OA,OB=$\sqrt{3}$OA.
在△OBD中,由正弦定理得:$\frac{OB}{sin∠ODB}$=$\frac{BD}{sin∠BOD}$,∴$\frac{\sqrt{3}•OA}{\frac{\sqrt{3}}{2}}$=$\frac{OA}{sin∠BOD}$,
解得sin∠BOD=$\frac{1}{2}$,∴∠BOD=$\frac{π}{6}$,∴θ=∠BOD+∠AOD=$\frac{π}{6}$+$\frac{π}{3}$=$\frac{5π}{6}$,
∴tanθ=-$\frac{\sqrt{3}}{3}$.
故選:C.
點評 本題考查了平面向量加法的幾何意義,正弦定理,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7、8 | B. | 5、7 | C. | 8、5 | D. | 7、7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$ | D. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com