10.在底面ABCD為平行四邊形的四棱柱ABCD-A1B1C1D1中,M是AC與BD的交點,若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,則下列向量中與$\overrightarrow{{B_1}M}$相等的向量是( 。
A.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$

分析 如圖所示,利用向量的三角形法則、平行四邊形法則即可得出:$\overrightarrow{{B_1}M}$=$\overrightarrow{{B}_{1}B}$+$\overrightarrow{BM}$,$\overrightarrow{BM}$=$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$.

解答 解:如圖所示,
$\overrightarrow{{B_1}M}$=$\overrightarrow{{B}_{1}B}$+$\overrightarrow{BM}$,$\overrightarrow{BM}$=$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$,
∴$\overrightarrow{{B}_{1}M}$=$\overrightarrow{c}$+$\frac{1}{2}$$(-\overrightarrow{a}+\overrightarrow)$
=$-\frac{1}{2}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow$+$\overrightarrow{c}$.
故選:A.

點評 本題考查了向量的三角形法則、平行四邊形法則,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.在等差數(shù)列{an}中,若a1,a3,a4成等比數(shù)列,則該等比數(shù)列的公比為( 。
A.$\frac{1}{2}$B.1C.1或$\frac{1}{2}$D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.計算題
(1)$\frac{1-2i}{3+4i}$
(2)設復數(shù)z滿足i(z-4)=3+2i(i是虛數(shù)單位),求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D為A1B1的中點.
(Ⅰ)證明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,點A1在平面ABC的射影在AC上,且側面A1ABB1的面積為$2\sqrt{3}$,求三棱錐A1-BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x3-ax,g(x)=$\frac{1}{2}$x2-lnx-$\frac{5}{2}$.
(1)若f(x)和g(x)在同一點處有相同的極值,求實數(shù)a的值;
(2)對于一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求實數(shù)a的取值范圍;
(3)設G(x)=$\frac{1}{2}$x2-$\frac{5}{2}$-g(x),求證:G(x)>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,且$\overrightarrow a$與$\overrightarrow c$的夾角為60°,$\overrightarrow a$與$\overrightarrow b$的夾角為θ,$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,則tanθ=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.數(shù)列$(1+\frac{1}{2})$,$(2+\frac{2}{3})$,$(3+\frac{3}{4})$,$(4+\frac{4}{5})$…的一個通項n+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知(x-$\sqrt{3}$)2017=a0x2017+a1x2016+a2x2015+…+a2016+a2017,則(a0+a2+…+a20162-(a1+a3+…+a20172的值為-22017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)g(x)=Acos(φx+ω)圖象的一個對稱中心可能為(  )
A.$(-\frac{5}{2},0)$B.$(\frac{1}{6},0)$C.$(-\frac{1}{2},0)$D.$(-\frac{11}{6},0)$

查看答案和解析>>

同步練習冊答案