13.已知函數(shù)f(x)=sin2x+acosx+a.
(1)當a=-$\frac{1}{2}$且x∈[0,2π],求函數(shù)f(x)的零點;
(2)求函數(shù)f(x)的最值.

分析 (1)利用換元法,設(shè)cosx=t,則t∈[-1,1],則f(t)=-t2-$\frac{1}{2}$t+$\frac{1}{2}$,根據(jù)零點和方程的根的關(guān)系,求出即可,
(2)采用配方法,得到f(x)=-(cosx-$\frac{a}{2}$)2+$\frac{1}{4}$a2+a+1,分類討論即可求出最值.

解答 解:(1)f(x)=sin2x-$\frac{1}{2}$cosx-$\frac{1}{2}$=-cos2x-$\frac{1}{2}$cosx+$\frac{1}{2}$,設(shè)cosx=t,則t∈[-1,1],
則f(t)=-t2-$\frac{1}{2}$t+$\frac{1}{2}$,
∴f(t)=-t2-$\frac{1}{2}$t+$\frac{1}{2}$=0,則t∈[-1,1],
解得t=-1,或t=$\frac{1}{2}$,
∴cosx=-1,或cosx=$\frac{1}{2}$,
∴x=$\frac{π}{2}$或$\frac{3π}{2}$或$\frac{π}{3}$或$\frac{5π}{3}$,
∴函數(shù)f(x)的零點為$\frac{π}{2}$或$\frac{3π}{2}$或$\frac{π}{3}$或$\frac{5π}{3}$,
(2)f(x)=sin2x+acosx+a=-cos2x+acosx+a+1=-(cosx-$\frac{a}{2}$)2+$\frac{1}{4}$a2+a+1,
當-1≤$\frac{a}{2}$≤1時,即-2≤a≤2時,函數(shù)的最大值為$\frac{1}{4}$a2+a+1,最小值為$\frac{1}{4}$a2+a,
當a<-2時,函數(shù)的最大值為0,最小值為2a,
當a>2時,函數(shù)的最大值為2a,最小值為0.

點評 本題以三角函數(shù)為載體,考查了函數(shù)的零點與方程根的關(guān)系,以及函數(shù)的最值問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.過點A(1,0)的直線l1與過點B(-1,4)的直線l2平行,且它們之間的距離為$\sqrt{2}$.求直線l1和l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a為實數(shù),f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求a的值,使f(x)的圖象關(guān)于原點對稱;
(2)上述函數(shù)是否具有單調(diào)性,如果具有單調(diào)性,試求出單調(diào)區(qū)間并加以證明,如果沒有單調(diào)性,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=ax-a2(a>0且a≠1)的圖象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知α是三角形的內(nèi)角,且2sinα+cosα=1.
(1)求tanα的值;
(2)求sin2(π+α)-cos($\frac{π}{2}$+α)cos(π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.cos4x-sin4x+2sin2x的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.下列隨機事件中,一次試驗各指什么?它們各有幾次試驗?試驗的可能結(jié)果又哪幾種?
(1)一天中,從北京站開往合肥站的3列列車,全部正點到達;
(2)某人射擊兩次,一次中靶,一次未中靶.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.利用正切函數(shù)的單調(diào)性比較下列各組中兩個正切值的大小:
(1)tan138°與tan143°;
(2)tan(-$\frac{13π}{4}$)與tan(-$\frac{17}{5}$π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一直線經(jīng)過點A(-2,-3),它的斜率等于直線y=2x的斜率的2倍,則該直線的方程為4x-y+5=0.

查看答案和解析>>

同步練習(xí)冊答案