6.一直線經(jīng)過點(diǎn)A(-2,-3),它的斜率等于直線y=2x的斜率的2倍,則該直線的方程為4x-y+5=0.

分析 要求的斜率等于直線y=2x的斜率的2倍,可得要求的直線斜率k=4.再利用點(diǎn)斜式即可得出.

解答 解:要求的斜率等于直線y=2x的斜率的2倍,
∴要求的直線斜率k=2×2=4.
∴要求的直線方程為:y+3=4(x+2),
化為4x-y+5=0.
故答案為:4x-y+5=0.

點(diǎn)評(píng) 本題考查了點(diǎn)斜式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2x+acosx+a.
(1)當(dāng)a=-$\frac{1}{2}$且x∈[0,2π],求函數(shù)f(x)的零點(diǎn);
(2)求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:A(-3,2),正方形0ABC的頂點(diǎn)按照順時(shí)針方向排列,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2-kx-8在[1,5]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,2]∪[10,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)y=cos2x與函數(shù)y=sin(2x+φ)在[0,$\frac{π}{4}$]上的單調(diào)性相同,則φ的一個(gè)值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列各題中的函數(shù)f(x)的解析式.
(1)已知函數(shù)y=f(x)滿足2f(x)+f$({\frac{1}{x}})$=2x,x∈R且x≠0,求f(x);
(2)已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)計(jì)算:(a${\;}^{\frac{8}{5}}$•b${\;}^{\frac{6}{5}}$)${\;}^{\frac{1}{2}}$÷$\root{5}{{a}^{4}}$÷$\root{5}{^{3}}$;
(Ⅱ)已知lga+lgb=2lg(a-2b),求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對(duì)于函數(shù)若f(x)=ax2+(b+1)x+b-2(a≠0),存在實(shí)數(shù)x0,使f(x0)=x0成立,則稱x0為f(x)的“希望值”.
(1)當(dāng)a=2,b=-2時(shí),求f(x)的希望值;
(2)若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)恒有希望值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.集合A={1,4,x},B={x2,1},B⊆A,則滿足條件的實(shí)數(shù)x的值為(  )
A.1或0B.1,0或2C.0,2或-2D.1或2

查看答案和解析>>

同步練習(xí)冊(cè)答案