數(shù)學(xué)公式(x,y∈Z)則x2+y的最大值為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:由題意得:得出y的取值范圍,再結(jié)合y∈Z,得出y的值,進(jìn)一小得到相應(yīng)的x的值,最后綜上知,當(dāng)y=0,x=2時(shí),x2+y取得最大值為4.
解答:由題意得:
根據(jù)實(shí)數(shù)的絕對值一定是非負(fù)數(shù)得:
?
∴-<y<2,y∈Z,
∴y=0,1
當(dāng)y=0時(shí)x=0,2;
當(dāng)y=1時(shí)x=1.
綜上知,當(dāng)y=0,x=2時(shí)
x2+y取得最大值為4.
故選D.
點(diǎn)評:本小題主要考查絕對值意義的應(yīng)用、不等關(guān)系、函數(shù)的最大值等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市盱眙縣高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市淮陰中學(xué)高三(下)期初數(shù)學(xué)試卷(解析版) 題型:解答題

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州師大附中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省連云港市東?h房山中學(xué)高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆浙江省溫州市高三五校聯(lián)考數(shù)學(xué)文卷 題型:填空題

若對任意x∈R,y∈R有唯一確定的f (x,y)與之對應(yīng),則稱f (x,y)為關(guān)于x,y的二元函數(shù).定義:同時(shí)滿足下列性質(zhì)的二元函數(shù)f (x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
(Ⅰ)非負(fù)性:f (x,y)≥0;
(Ⅱ)對稱性:f (x,y)= f (y,x);
(Ⅲ)三角形不等式:f (x,y)≤f (x,z)+ f (z,y)對任意的實(shí)數(shù)z均成立.
給出下列二元函數(shù):
①f (x,y)=(x-y)2;②f (x,y)=|x-y|;③f (x,y)=;④f (x,y)=|sin(x-y)|.
則其中能夠成為關(guān)于x,y的廣義“距離”的函數(shù)編號(hào)是______.(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊答案