若實(shí)數(shù)x,y滿足
x-4y≤-3
3x+5y≤25
x≥1
,則2x+y的最大值是
 
分析:先根據(jù)約束條件畫出可行域,設(shè)z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y可行域內(nèi)的點(diǎn)B時(shí),從而得到z=2x+y的最值即可.
解答:精英家教網(wǎng)解:如圖:作出可行域
目標(biāo)函數(shù):z=2x+y,則y=-2x+z
當(dāng)目標(biāo)函數(shù)的直線過點(diǎn)A時(shí),Z有最大值.
A點(diǎn)坐標(biāo)由方程組
x-4y=-3
3x+5y=25
解得
x=5
y=2

A(5,2)Zmax=2x+y=12.
故z=2x+y的最大值為:12.
故答案為:12
點(diǎn)評(píng):主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
則M=x+y
的最小值是( 。
A、
1
3
B、2
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x、y滿足
(x-y+6)(x+y-6)≥0
1≤x≤4
,則
y
x
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≤0
x≤0
,則x2+y2的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•衢州一模)若實(shí)數(shù)x,y滿足
x+y-2≥0
x≤4
y≤5
,則s=y-x的最大值是
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•深圳二模)若實(shí)數(shù)x,y滿足
x≤1
y≥0
x-y≥0
,則x+y的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案