10.如圖,兩座相距60m的建筑物AB,CD的高度分別為20m,50m,BD為水平面,則從建筑物AB的頂端A看建筑物CD的張角為( 。
A.30°B.45°C.60°D.75°

分析 過A作AE⊥CD,垂足為E,在Rt△ABD和Rt△ACE中使用勾股定理求出AD,AC的長,再在△ACD中使用余弦定理求出∠CAD.

解答 解:過A作AE⊥CD,垂足為E,則CE=50-20=30,AE=60,
∴AD=$\sqrt{A{B}^{2}+B{D}^{2}}$=20$\sqrt{10}$,
AC=$\sqrt{C{E}^{2}+A{E}^{2}}$=30$\sqrt{5}$,
在△ACD中,由余弦定理得
cos∠CAD=$\frac{A{C}^{2}+A{D}^{2}-C{D}^{2}}{2AC•AD}$=$\frac{\sqrt{2}}{2}$,
∴∠CAD=45°.
故選:B.

點評 本題考查了解三角形在生活中的應用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=log2(|2x-1|+|x+2|-a)
(1)當a=4時,求函數(shù)f(x)的定義域;
(2)若對任意的x∈R,都有f(x)≥2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.(文科)已知曲線y=x+lnx在點(1,1)處的切線與曲線y=ax2+(a+2)x+1相切,則a=8.
(理科)曲線y=x2與y=x所圍成的封閉圖形的面積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知an=$\left\{\begin{array}{l}{\frac{{3}^{n}-{2}^{n}}{{3}^{n}+{2}^{n}},n≤2014}\\{\frac{{2}^{n}-{3}^{n}}{{2}^{n}+{3}^{n}},n≥2015}\end{array}\right.$,則$\underset{lim}{n→∞}$an=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某校為了解學生一次考試后數(shù)學、物理兩個科目的成績情況,從中隨機抽取了25位考生的成績進行統(tǒng)計分析.25位考生的數(shù)學成績已經(jīng)統(tǒng)計在莖葉圖中,物理成績?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計;
(Ⅱ)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學成績的頻數(shù)分布表及數(shù)學成績的頻率分布直方圖;
數(shù)學成績的頻數(shù)分布表

(Ⅲ)設(shè)上述樣本中第i位考生的數(shù)學、物理成績分別為xi,yi(i=1,2,3,…,25).通過對樣本數(shù)據(jù)進行初步處理發(fā)現(xiàn):數(shù)學、物理成績具有線性相關(guān)關(guān)系,得到:$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y關(guān)于x的線性回歸方程,并據(jù)此預測當某考生的數(shù)學成績?yōu)?00分時,該考生的物理成績(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x),f(x+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)y=f(x)的定義域是[-2,4],則函數(shù)g(x)=f(x+1)+f(-x)的定義域是( 。
A.[-4,4]B.[-2,2]C.[-3,2]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知等差數(shù)列{an}的前n項和是Sn,若M,N,P三點共線,O為坐標原點,且$\overrightarrow{ON}$=a15$\overrightarrow{OM}$+a6$\overrightarrow{OP}$(直線MP不過點O),則S20等于10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求值:
(1)sinα-cosα;
(2)sin3(3π-α)+cos3(2π-α).

查看答案和解析>>

同步練習冊答案