解:設(shè)
依題意             
,得           ①
已知直線的傾斜角為45°,

即                       ②


化簡,得

直線與曲線相交于兩點(diǎn),
由上面的方程①,得
>0


所求軌跡方程是

軌跡圖形是橢圓在兩條直線
之間的部分及點(diǎn)(0,-1)。
綜合此題時(shí)要注意曲線與方程的概念,在求出軌跡方程時(shí),應(yīng)判斷軌跡上的所有點(diǎn)是否都滿足方程,滿足方程的點(diǎn)是否都在軌跡上,此題應(yīng)注意直線與曲線是否相交,通過二次方程判別式>0,得出的取值范圍,因此軌跡圖形不是整個(gè)橢圓;而是它的一部分,也就是說滿足方程的點(diǎn)不全是軌跡上的點(diǎn),因此應(yīng)除去,此題中方程只代表一個(gè)點(diǎn)(0,-1)也是應(yīng)該注意的。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從等腰直角△上,按圖示方式剪下兩個(gè)正方形,其中,∠
求這兩個(gè)正方形的面積之和的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸, 一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長軸上較近的端點(diǎn)距離為-4,求此橢圓方程、離心率、準(zhǔn)線方程及準(zhǔn)線間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)如圖,已知圓Ox2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,2)的直線與曲線C相交于不同的兩點(diǎn)M、N,且MD、N之間,設(shè),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線PQ的斜率為-,將直線繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°所得的直線的斜率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線過點(diǎn)且與線段相交,那么直線的斜率的取值范圍是( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,圓上的點(diǎn)到直線        
14.
的距離的最小值是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線的傾斜角是    (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案