【題目】用數(shù)學(xué)歸納法證明命題“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”,第二步假設(shè)n=2k﹣1(k∈N+)命題為真時(shí),進(jìn)而需證n=時(shí),命題亦真.

【答案】2k+1
【解析】解:當(dāng)n為正奇數(shù)時(shí),求證xn+yn被x+y整除
用數(shù)學(xué)歸納法證明時(shí)候,第二步假設(shè)n=2k﹣1時(shí)命題為真,進(jìn)而需要驗(yàn)證n=2k+1.
所以答案是:2k+1.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)學(xué)歸納法的定義(數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是奇函數(shù),且當(dāng)x<0時(shí),函數(shù)解析式為:f(x)=1﹣2x,則當(dāng)x>0時(shí),該函數(shù)的解析式為(
A.f(x)=﹣1﹣2x
B.f(x)=1+2x
C.f(x)=﹣1+2x
D.f(x)=1﹣2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是(
A.由平面三角形的性質(zhì)推測空間三棱錐的性質(zhì)
B.所有的金屬都能夠?qū)щ,鈾是金屬,所以鈾能夠(qū)щ?/span>
C.高一參加軍訓(xùn)有12個(gè)班,1班51人,2班53人,三班52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=2,an=2an1+1(n≥2),由此歸納出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x<6},則集合(UA)∩B=(
A.{x|0<x<2}
B.{x|0<x≤2}
C.{x|0≤x<2}
D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)一個(gè)容量為N的總體抽取容量為n的樣本,當(dāng)選取簡單隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時(shí),總體中每個(gè)個(gè)體被抽中的概率分別為P1 , P2 , P3 , 則(
A.P1=P2<P3
B.P2=P3<P1
C.P1=P3<P2
D.P1=P2=P3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以圓錐曲線的焦點(diǎn)弦為直徑的圓和相應(yīng)準(zhǔn)線相切,則這樣的圓錐曲線是(
A.不存在的
B.橢圓
C.雙曲線
D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若A,B事件互斥,且有P(A)=0.1,P(B)=0.3,那么P(A∪B)=( )
A.0.6
B.0.4
C.0.2
D.0.03

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩條異面直線m和n在平面α上的平行射影是(
A.一條直線和直線外一個(gè)點(diǎn)
B.兩條相交直線
C.兩條平行直線
D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”.某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識(shí)的競賽.現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐.規(guī)定:每場知識(shí)競賽前三名的得分都分別為a,b,c(a>b>c,且a,b,c∈N*);選手最后得分為各場得分之和.在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列說法正確的是(
A.每場比賽第一名得分a為4
B.甲可能有一場比賽獲得第二名
C.乙有四場比賽獲得第三名
D.丙可能有一場比賽獲得第一名

查看答案和解析>>

同步練習(xí)冊(cè)答案