【題目】甲參加A , BC三個(gè)科目的學(xué)業(yè)水平考試,其考試成績(jī)合格的概率如下表,假設(shè)三個(gè)科目的考試甲是否成績(jī)合格相互獨(dú)立.

科目A

科目B

科目C

(I)求甲至少有一個(gè)科目考試成績(jī)合格的概率;
(Ⅱ)設(shè)甲參加考試成績(jī)合格的科目數(shù)量為X , 求X的分布列和數(shù)學(xué)期望.

【答案】解:(I)記“甲至少有一個(gè)科目考試成績(jī)合格”為事件M

P )=(1- )×(1- )×(1- )= ,

所以PM)=1-P )=

(II)依題意X=0,1,2,3.

PX=0)=(1- )×(1- )×(1- )= ;

PX=1)= ×(1- )×(1- )+(1- )× ×(1- )+(1- )×(1- )× = = ;

PX=3)= × × = = ;

PX=2)=1-PX=0)-PX=1)-PX=3)=

所以,隨機(jī)變量X的分布列為:

X

0

1

2

3

P

EX=0× +1× +2× +3× =


【解析】(1)根據(jù)題意利用對(duì)立事件的概率求出“甲至少有一個(gè)科目考試成績(jī)合格”的概率。(2)由已知求出X的取值為0,1,2,3,結(jié)合概率的定義分別求出各個(gè)X值對(duì)應(yīng)的概率值列表即可,再把數(shù)值代入數(shù)學(xué)期望公式求出即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面三個(gè)類(lèi)比結(jié)論:①向量 ,有 ;類(lèi)比復(fù)數(shù) ,有 ;
②實(shí)數(shù) ;類(lèi)比向量 ,有 ;
③實(shí)數(shù) ,則 ;類(lèi)比復(fù)數(shù) ,有 ,則 .其中類(lèi)比結(jié)論正確的命題個(gè)數(shù)為 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)|x﹣a|﹣x|x|+2a+1(a<0,)若存在x0∈[﹣1,1],使f(x0)≤0,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱(chēng)這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖.若運(yùn)行該程序,則輸出的n的值為:(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)(
A.48
B.36
C.30
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市對(duì)大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補(bǔ)貼,貸款期限分為6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,對(duì)于這五種期限的貸款政府分別補(bǔ)貼200元、300元、300元、400元、400元,從2016年享受此項(xiàng)政策的自主創(chuàng)業(yè)人員中抽取了100人進(jìn)行調(diào)查統(tǒng)計(jì),選取貸款期限的頻數(shù)如表:

貸款期限

6個(gè)月

12個(gè)月

18個(gè)月

24個(gè)月

36個(gè)月

頻數(shù)

20

40

20

10

10

以上表中各種貸款期限的頻數(shù)作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率.
(Ⅰ)某大學(xué)2017年畢業(yè)生中共有3人準(zhǔn)備申報(bào)此項(xiàng)貸款,計(jì)算其中恰有兩人選擇貸款期限為12個(gè)月的概率;
(Ⅱ)設(shè)給某享受此項(xiàng)政策的自主創(chuàng)業(yè)人員補(bǔ)貼為X元,寫(xiě)出X的分布列;該市政府要做預(yù)算,若預(yù)計(jì)2017年全市有600人申報(bào)此項(xiàng)貸款,則估計(jì)2017年該市共要補(bǔ)貼多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在D上的函數(shù) ,若滿足: ,都有 成立,則稱(chēng) D上的有界函數(shù),其中M稱(chēng)為函數(shù) 的上界.
(I)設(shè) ,證明: 上是有界函數(shù),并寫(xiě)出 所有上界的值的集合;
(II)若函數(shù) 上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐曲線 .命題 :方程 表示焦點(diǎn)在 軸上的橢圓;命題 :圓錐曲線 的離心率 ,若命題 為真命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域?yàn)?/span>,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn), 在圖中以表示.

)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 及乙組同學(xué)投籃命中次數(shù)的方差;

)在()的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案