【題目】某公司為了激勵業(yè)務(wù)員的積極性,對業(yè)績在60萬到200萬的業(yè)務(wù)員進行獎勵獎勵方案遵循以下原則:獎金y(單位:萬元)隨著業(yè)績值x(單位:萬元)的增加而增加,且獎金不低于1.5萬元同時獎金不超過業(yè)績值的5%.
(1)若某業(yè)務(wù)員的業(yè)績?yōu)?/span>100萬核定可得4萬元獎金,若該公司用函數(shù)(k為常數(shù))作為獎勵函數(shù)模型,則業(yè)績200萬元的業(yè)務(wù)員可以得到多少獎勵?(已知,)
(2)若采用函數(shù)作為獎勵函數(shù)模型試確定最小的正整數(shù)a的值.
【答案】(1)萬元;(2)481
【解析】
(1)將,代入求出參數(shù)的值,即可求出函數(shù)解析式,再將代入求值即可;
(2)根據(jù)所給函數(shù)模型,函數(shù)在上單調(diào)遞增,所以,且即可求出參數(shù)取值范圍,從而得到最小正整數(shù)的值.
解:(1)對于函數(shù)模型(為常數(shù)),
當(dāng)時,,代入解得,即,
當(dāng)時,是增函數(shù),
當(dāng)時,,∴業(yè)績200萬元的業(yè)務(wù)員可以得到萬元獎勵.
(2)對于函數(shù)模型.
因為為正整數(shù),所以函數(shù)在遞增;,解得;
要使對成立,即對恒成立,函數(shù)在上的最大值為480.2,所以.綜上可知,
即滿足條件的最小正整數(shù)的值為481.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是________.
①是的最大值點.
②函數(shù)有且只有1個零點.
③存在正實數(shù),使得恒成立.
④對任意兩個不相等的正實數(shù),若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工業(yè)部門計劃對所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對所轄企業(yè)是否支持技術(shù)改造進行的問卷調(diào)查的結(jié)果:
支持 | 不支持 | 合計 | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計 | 560 |
已知從這560家企業(yè)中隨機抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.
(1)能否在犯錯誤的概率不超過0.025的前提下認為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?
(2)從上述支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出12家企業(yè),然后從這12家企業(yè)選出9家進行獎勵,分別獎勵中型企業(yè)50萬元,小型企業(yè)10萬元.設(shè)為所發(fā)獎勵的金額.
求的分布列和期望.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某種設(shè)備的使用年限(年)與所支出的維修費用 (萬元)有如下統(tǒng)計:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, . ,
(1)求, ;
(2)與具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)估計使用年限為10年時,維修費用約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為F,已知直線與拋物線C交于A,B兩點(A,B兩點分別在軸的上、下方).
(1)求證:;
(2)已知弦長,試求:過A,B兩點,且與直線相切的圓D的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上是單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(2)討論的極值點的個數(shù);
(3)若有兩個極值點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,錯誤的是( )
A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不變
B.對于回歸方程,變量每增加一個單位,平均增加5個單位
C.線性回歸方程所對應(yīng)的直線必過點
D.在一個列聯(lián)表中,由計算得,則有的把握說兩個變量有關(guān)
本題可以參考獨立性檢驗臨界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位擬從40名員工中選1人贈送電影票,可采用下面兩種選法:
選法一:將這40名員工按1~40進行編號,并相應(yīng)地制作號碼為140的40個號簽,把這40個號簽放在一個暗箱中攪勻,最后隨機地從中抽取1個號簽,與這個號簽編號一致的員工幸運入選;
選法二:將39個白球與1個紅球(球除顏色外,其他完全相同)混合放在一個暗箱中攪勻,讓40名員工逐一從中摸取一個球,則摸到紅球的員工幸運入選.試問:
(1)這兩種選法是否都是抽簽法,為什么?
(2)這兩種選法中每名員工被選中的可能性是否相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,為的中點,以為折痕將折起,使點到達點的位置,且平面平面,是中點,.
(1)求證:平面;
(2)若,,求三棱錐的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com