設(shè)函數(shù)f(x)=sin(ωx+數(shù)學(xué)公式)+sinωx(ω>0)相鄰兩條對稱軸間的距離為2,則f(1)的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    -數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    -數(shù)學(xué)公式
C
分析:首先對所給的函數(shù)式進(jìn)行恒等變形,整理出可以求解周期的形式,根據(jù)兩條對稱軸之間的距離得出周期,從而可得ω,計(jì)算f(1)的值即可.
解答:∵f(x)=sin(ωx+)+sinωx
=sinωxcos+cosωxsin+sinωx
=sinωx+cosωx
=sin(ωx+),
∵圖象的相鄰兩條對稱軸間的距離是2,
∴函數(shù)周期是4,又ω>0,
=4,
∴ω=
∴f(x)=sin(x+),
∴f(1)=sin
=
故選C.
點(diǎn)評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,本題解題的關(guān)鍵是首先對函數(shù)進(jìn)行整理,得到最簡形式,再根據(jù)兩個(gè)對稱軸的距離得到ω,考查理解與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π6
)-1(ω>0)的導(dǎo)數(shù)f′(x)的最大值為2,則f(x)的圖象的一個(gè)對稱中心的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
),現(xiàn)有下列結(jié)論:
(1)f(x)的圖象關(guān)于直線x=
π
3
對稱;
(2)f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對稱
(3)把f(x)的圖象向左平移
π
12
個(gè)單位,得到一個(gè)偶函數(shù)的圖象;
(4)f(x)的最小正周期為π,且在[0,
π
6
]上為增函數(shù).
其中正確的結(jié)論有
 
(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
12
<φ<
π
2
),給出以下四個(gè)論斷:
①f(x)的周期為π; ②f(x)在區(qū)間(-
π
6
,0)上是增函數(shù);
③f(x)的圖象關(guān)于點(diǎn)(
π
3
,0)對稱;④f(x)的圖象關(guān)于直線x=
π
12
對稱.
以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的一個(gè)命題:
 
 
(只需將命題的序號填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位長度,得到函數(shù)g(x)的圖象,求g (x)在區(qū)間[-
π
6
,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽一模)設(shè)函數(shù)f(x)=sin(2x+
π
3
)+2cos2
π
4
-x).
(1)求f(x)的最小正周期及對稱軸方程;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C的對邊分別是a,b,c,若f(
C
2
)=
3
+1,c=
6
,cosB=
3
5
,求b.

查看答案和解析>>

同步練習(xí)冊答案