△ABC中,∠A,∠B,∠C所對的邊長分別為a,b,c,若a=5,b=12,sinA=
5
13
,求sinB.
考點:正弦定理
專題:解三角形
分析:利用正弦定理即可得出.
解答: 解:由正弦定理可得:
a
sinA
=
b
sinB
,
sinB=
bsinA
a
=
12×
5
13
5
=
12
13
點評:本題考查了正弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M(x,y)在直線PQ上,且2
PM
+3
MQ
=0,
RP
PM
=0,則4x+2y-3的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2sin(2x+
π
6
)+a-1(a∈R)在區(qū)間[0,
π
2
]上有兩個零點x1,x2(x1≠x2),則x1+x2-a的取值范圍是( 。
A、(
π
3
-1,
π
3
+1)
B、[
π
3
,
π
3
+1)
C、(
3
-1,
3
+1)
D、[
3
,
3
+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(ax-1)(a>0,且a≠1)
(1)證明函數(shù)f(x)的圖象在y軸的一側
(2)設A(x1,y1),B(x2,y  2)(x1<x2)圖象上兩點,證明直線AB的斜率大于0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左.右焦點分別為F1.F2,線段F1F2被拋物線y2=2bx的焦點分成5:3兩段,則此雙曲線的離心率為( 。
A、
2
B、
3
C、
3
2
4
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|sinx-a|,a∈R.
(1)試討論函數(shù)f(x)的奇偶性;
(2)求當f(x)取得最大值時,自變量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式|mx-2|<3的解集為{x|-
5
6
<x<
1
6
},則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知S,A,B,C是球O表面上的點,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=
2
,則球O的內接正四面體的棱長等于( 。
A、
2
6
3
B、
6
3
C、
3
6
2
D、2
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AC,BD是圓O的兩條互相垂直的直徑,直角梯形ABEF所在平面與圓O所在平面互相垂直,其中∠FAB=∠EBA=90°,BE=2,AF=6,AC=4
2
,點N為線段EF中點.
(Ⅰ)求證:直線NO∥平面EBC;
(Ⅱ)若點M在線段AC上,且點M在平面CEF上的射影為線段NC的中點,請求出線段AM的長.

查看答案和解析>>

同步練習冊答案