【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點(diǎn),以AB為直徑作⊙O,并分別交AC,AD于點(diǎn)E,F(xiàn).

(1)證明:C,E,F(xiàn),D四點(diǎn)共圓;
(2)若D為BC的中點(diǎn),且AF=3,F(xiàn)D=1,求AE的長.

【答案】
(1)證明:連結(jié)EF,BE,則∠ABE=∠AFE,因?yàn)锳B是⊙O是直徑,

所以,AE⊥BE,又因?yàn)锳B⊥BC,∠ABE=∠C,

所以∠AFE=∠C,即∠EFD+∠C=180°,

∴C,E,F(xiàn),D四點(diǎn)共圓.


(2)解:因?yàn)锳B⊥BC,AB是直徑,

所以,BC是圓的切線,DB2=DFDA=4,即BD=2,

所以,AB= =2

因?yàn)镈為BC的中點(diǎn),所以BC=4,AC= =2 ,

因?yàn)镃、E、F、D四點(diǎn)共圓,所以AEAC=AFAD,

即2 AE=12,即AE=


【解析】(1)連結(jié)EF,BE,說明AB是⊙O是直徑,推出∠ABE=∠C,然后證明C,E,F(xiàn),D四點(diǎn)共圓.(2)利用切割線定理求解BD,利用C、E、F、D四點(diǎn)共圓,得到AEAC=AFAD,然后求解AE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為坐標(biāo)原點(diǎn),橢圓 的左右焦點(diǎn)分別為,離心率為;雙曲線 的左右焦點(diǎn)分別為,離心率為,已知,.

(1)的方程;

(2)點(diǎn)作的不垂直于軸的弦, 的中點(diǎn),當(dāng)直線交于兩點(diǎn)時(shí),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

1)求的單調(diào)區(qū)間;

2)求[-5 ]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓E: , 兩點(diǎn),O為坐標(biāo)原點(diǎn)
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使該圓的任意一條切線與橢圓E 恒有兩個(gè)交點(diǎn)A、B,且 ?若存在,寫出該圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(附加題,本小題滿分10分,該題計(jì)入總分)

已知函數(shù),若在區(qū)間內(nèi)有且僅有一個(gè),使得成立,則稱函數(shù)具有性質(zhì)

(1)若,判斷是否具有性質(zhì),說明理由;

(2)若函數(shù)具有性質(zhì),試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某算法的程序框圖,則程序運(yùn)行后輸出的結(jié)果是(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長為1,線段上有兩個(gè)動點(diǎn),則下列結(jié)論中正確的是__________

平面;

②平面平面

③三棱錐的體積為定值;

④存在某個(gè)位置使得異面直線成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓滿足:①圓心在第一象限,截軸所得弦長為2;②被軸分成兩段圓弧,其弧長的比為;③圓心到直線的距離為.

(Ⅰ)求圓的方程;

(Ⅱ)若點(diǎn)是直線上的動點(diǎn),過點(diǎn)分別做圓的兩條切線,切點(diǎn)分別為 ,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鈍角三角形ABC的面積是 ,AB=1,BC= ,則AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

同步練習(xí)冊答案