分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(2),f′(2),求出切線方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
解答 解:(1)當(dāng)m=1時(shí),f(x)=$\frac{2x}{{x}^{2}+1}$,f(2)=$\frac{4}{5}$,
又因?yàn)閒′(x)=$\frac{2(1{-x}^{2})}{{{(x}^{2}+1)}^{2}}$=,則f′(2)=-$\frac{6}{25}$.
所以曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為
y-$\frac{4}{5}$=-$\frac{6}{25}$(x-2),即6x+25y-32=0.
(2)f′(x)=$\frac{-2(x-m)(mx+1)}{{{(x}^{2}+1)}^{2}}$,m=2時(shí)
令f′(x)=0,得到x1=-$\frac{1}{2}$,x2=2,
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (-∞,-$\frac{1}{2}$) | -$\frac{1}{2}$ | (-$\frac{1}{2}$,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $x=\frac{π}{12}$ | B. | $x=-\frac{π}{12}$ | C. | $x=\frac{π}{3}$ | D. | $x=-\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1 | B. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com