過(guò)雙曲線
x2
9
-
y2
16
=1
的右焦點(diǎn),直平行于經(jīng)過(guò)一、三象限的漸近線的直線方程是______’
∵雙曲線的方程為
x2
9
-
y2
16
=1

∴a=3,b=4,c=5,故右焦點(diǎn)(5,0)
所以漸進(jìn)線方程為y=±
4
3
x
,
由題意可知所要求的直線斜率為
4
3
,
故方程為:y-0=
4
3
(x-5)
整理可得4x-3y-20=0
故答案為:4x-3y-20=0
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•洛陽(yáng)模擬)設(shè)F1,F(xiàn)2分別為雙曲線
x2
9
-
y2
16
=1
的左右焦點(diǎn),過(guò)F1引圓x2+y2=9的切線F1P交雙曲線的右支于點(diǎn)P,T為切點(diǎn),M為線段F1P的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
4
,拋物線y2=20x的準(zhǔn)線過(guò)雙曲線的左焦點(diǎn),則此雙曲線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P為雙曲線
x29
-y2=1
上一點(diǎn),F(xiàn)1,F(xiàn)2為它的左、右兩個(gè)焦點(diǎn),PQ是∠F1PF2的角分線.過(guò)F1作PQ的垂線,垂足為R,點(diǎn)O為坐標(biāo)原點(diǎn),則|OR|=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
9
-
y2
b2
=1(b>0)
,過(guò)其右焦點(diǎn)F作圓x2+y2=9的兩條切線,切點(diǎn)記作C,D,雙曲線的右頂點(diǎn)為E,∠CED=150°,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:藍(lán)山縣模擬 題型:單選題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
4
,拋物線y2=20x的準(zhǔn)線過(guò)雙曲線的左焦點(diǎn),則此雙曲線的方程為( 。
A.
x2
4
-
y2
3
=1
B.
x2
3
-
y2
4
=1
C.
x2
16
-
y2
9
=1
D.
x2
9
-
y2
16
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案