過拋物線x2=-2y上一點(diǎn)P(2,-2),作傾斜角互補(bǔ)的弦PA、PB,則AB弦的斜率為   
【答案】分析:用特殊值法,傾斜角互補(bǔ),斜率互為相反數(shù),考慮過原點(diǎn)的直線y=-x和直線y=x+4,由此能求出AB的斜率.
解答:解:用特殊值法,
∵傾斜角互補(bǔ),
∴斜率互為相反數(shù),
∴考慮過原點(diǎn)的直線y=-x和直線y=x+4,
則y=x+4與拋物線x2=-2y交點(diǎn)為(-4,8),
故AB的斜率為2.
故答案為:2.
點(diǎn)評(píng):本題主要考查拋物線標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),直線與拋物線的位置關(guān)系,拋物線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線x2=-2y上一點(diǎn)P(2,-2),作傾斜角互補(bǔ)的弦PA、PB,則AB弦的斜率為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•成都二模)過拋物線x2=2y上兩點(diǎn)A(-1,
1
2
)、B(2,2)分別作拋物線的切線,兩條切線交于點(diǎn)M.
(1)求證:∠BAM=∠BMA;
(2)記過點(diǎn)A、B且中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸的雙曲線為C,F(xiàn)1、F2為C的兩個(gè)焦點(diǎn),B1、B2為C的虛軸的兩個(gè)端點(diǎn),過點(diǎn)B2作直線PQ分別交C的兩支于P、Q,當(dāng)
PB1
QB1
∈(0,4]時(shí),求直線PQ的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線x2=2y上兩點(diǎn)A(-1,數(shù)學(xué)公式)、B(2,2)分別作拋物線的切線,兩條切線交于點(diǎn)M.
(1)求證:∠BAM=∠BMA;
(2)記過點(diǎn)A、B且中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸的雙曲線為C,F(xiàn)1、F2為C的兩個(gè)焦點(diǎn),B1、B2為C的虛軸的兩個(gè)端點(diǎn),過點(diǎn)B2作直線PQ分別交C的兩支于P、Q,當(dāng)數(shù)學(xué)公式∈(0,4]時(shí),求直線PQ的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線x2=-2y上一點(diǎn)P(2,-2),作傾斜角互補(bǔ)的弦PA、PB,則AB弦的斜率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年四川省成都市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

過拋物線x2=2y上兩點(diǎn)A(-1,)、B(2,2)分別作拋物線的切線,兩條切線交于點(diǎn)M.
(1)求證:∠BAM=∠BMA;
(2)記過點(diǎn)A、B且中心在坐標(biāo)原點(diǎn)、對(duì)稱軸為坐標(biāo)軸的雙曲線為C,F(xiàn)1、F2為C的兩個(gè)焦點(diǎn),B1、B2為C的虛軸的兩個(gè)端點(diǎn),過點(diǎn)B2作直線PQ分別交C的兩支于P、Q,當(dāng)∈(0,4]時(shí),求直線PQ的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案