設(shè)集合,若,求k的取值范圍.

解:易知:,

設(shè)

故方程

要使AI B,需 ,只需

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+2x-8>0},B={x|x2+2kx-3k2+8k-4<0},若A∩B≠∅,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臺(tái)州一模)已知函數(shù)f(x)=kx,g(x)=
tx2
-1
,k為非零實(shí)數(shù).
(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個(gè)實(shí)數(shù)根,且在[-5,-1]上至多有一個(gè)實(shí)數(shù)根.若存在,請(qǐng)求出所有k的值的集合;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008屆高三全國(guó)第一次聯(lián)考數(shù)學(xué)試題 題型:044

設(shè)集合M={x|-1≤x<2},N={x|x≤k+3},若.求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省溫州市高二第二學(xué)期期中考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題

已知函數(shù),k為非零實(shí)數(shù).

(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;

(Ⅱ)是否存在正實(shí)數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個(gè)實(shí)數(shù)根,且在[-5,-1]上至多有一個(gè)實(shí)數(shù)根.若存在,請(qǐng)求出所有k的值的集合;若不存在,請(qǐng)說明理由.

 

【解析】本試題考查了運(yùn)用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時(shí)還能對(duì)于方程解的問題,轉(zhuǎn)化為圖像與圖像的交點(diǎn)問題來長(zhǎng)處理的數(shù)學(xué)思想的運(yùn)用。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案