【題目】下列說(shuō)法正確的是( )

A. 天氣預(yù)報(bào)說(shuō)明天下雨的概率為,則明天一定會(huì)下雨

B. 不可能事件不是確定事件

C. 統(tǒng)計(jì)中用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量的線性關(guān)系的強(qiáng)弱,若則兩個(gè)變量正相關(guān)很強(qiáng)

D. 某種彩票的中獎(jiǎng)率是,則買1000張這種彩票一定能中獎(jiǎng)

【答案】C

【解析】

運(yùn)用概率的相關(guān)知識(shí)對(duì)四個(gè)選項(xiàng)逐一進(jìn)行分析即可

對(duì)于,天氣預(yù)報(bào)說(shuō)明天下雨的概率為,表示下雨的可能性比較大,是不確定事件,在一定條件下可能下雨,也可能不下雨,但明天一定會(huì)下雨是不正確的,故錯(cuò)誤;

對(duì)于,根據(jù)定義可知不可能事件是確定事件,故錯(cuò)誤;

對(duì)于,統(tǒng)計(jì)中用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量的線性關(guān)系的強(qiáng)弱,若則兩個(gè)變量正相關(guān)很強(qiáng),故正確;

對(duì)于,某種彩票的中獎(jiǎng)率是,每一次買彩票的中獎(jiǎng)是獨(dú)立的,并不是買1000張這種彩票一定能中獎(jiǎng),故錯(cuò)誤

故選

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長(zhǎng)度單位相同.已知曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)在曲線上求一點(diǎn),使它到直線 為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若對(duì)任意,存在,使,則實(shí)數(shù)b的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)討論的單調(diào)性;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若由方程x2y2=0和x2+(yb)2=2所組成的方程組至多有兩組不同的實(shí)數(shù)解,則實(shí)數(shù)b的取值范圍是(  )

A. b≥2b≤-2 B. b≥2或b≤-2

C. -2≤b≤2 D. -2b≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱柱中,已知AB=2, ,

E、F分別為、上的點(diǎn),且.

(1)求證:BE⊥平面ACF;

(2)求點(diǎn)E到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù))與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

銷售價(jià)格

16

13

9.5

7

4.5

(I)試求關(guān)于的回歸直線方程.

(參考公式:,

(II)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(I)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大?(利潤(rùn)=銷售價(jià)格-收購(gòu)價(jià)格)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),一個(gè)長(zhǎng)軸端點(diǎn)為,離心率,過(guò)P分別作斜率為的直線PAPB,交橢圓于點(diǎn)A,B

1求橢圓的方程;

2,則直線AB是否經(jīng)過(guò)某一定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集為M.

(1)求M;

(2)當(dāng)a2,b2M時(shí),證明: |ab|≤|ab+3|.

查看答案和解析>>

同步練習(xí)冊(cè)答案