【題目】設(shè)函數(shù)

(1)討論的單調(diào)性;

(2)證明:當(dāng)時(shí),

【答案】(1)見(jiàn)解析 (2)見(jiàn)解析

【解析】

(1)先求函數(shù)定義域,由導(dǎo)數(shù)大于0,得增區(qū)間;導(dǎo)數(shù)小于0,得減區(qū)間;

(2)由題意可得即證lnxx﹣1<xlnx.由(1)的單調(diào)性可得lnxx﹣1;設(shè)Fx)=xlnxx+1,x>1,求出單調(diào)性,即可得到x﹣1<xlnx成立;

(1)由題設(shè),的定義域?yàn)?/span>

,,解得

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減.

(2)證明:當(dāng)x(1,+∞)時(shí),,即為lnxx﹣1<xlnx

由(1)可得fx)=lnxx+1在(1,+∞)遞減,

可得fx)<f(1)=0,即有lnxx﹣1;

設(shè)Fx)=xlnxx+1,x>1,F′(x)=1+lnx﹣1=lnx

當(dāng)x>1時(shí),F′(x)>0,可得Fx)遞增,即有Fx)>F(1)=0,

即有xlnxx﹣1,則原不等式成立;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖幾何體ADM-BCN中, 是正方形, , , , .

(Ⅰ)求證:

(Ⅱ)求證: ;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, , , 中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過(guò)程中, 平面是否成立?并證明你的結(jié)論;

(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求寫出下列命題,并判斷真假:

1)命題:中,若的逆命題;

2)命題:若兩個(gè)數(shù)的和為有理數(shù),則這兩個(gè)數(shù)都是有理數(shù)。的否命題;

3)命題:a≠0b≠0,ab≠0”的逆否命題;

4)命題:a=0b=0,a2+b2=0”的逆否命題;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:

(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的年輕男性,設(shè)調(diào)查的3人在這一時(shí)間段以上網(wǎng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;

(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為周末年輕人的休閑方式與性別有關(guān)系”?

參考公式:

參考數(shù)據(jù):

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 天氣預(yù)報(bào)說(shuō)明天下雨的概率為,則明天一定會(huì)下雨

B. 不可能事件不是確定事件

C. 統(tǒng)計(jì)中用相關(guān)系數(shù)來(lái)衡量?jī)蓚(gè)變量的線性關(guān)系的強(qiáng)弱,若則兩個(gè)變量正相關(guān)很強(qiáng)

D. 某種彩票的中獎(jiǎng)率是,則買1000張這種彩票一定能中獎(jiǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱中,為等腰直角三角形,,且,分別為,的中點(diǎn).

(1)求證:直線平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案