過點P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點為M1,設(shè)M1在x軸上的投影是點P1;又過點P1作曲線C的切線,切點為M2,設(shè)M2在x軸上的投影是點P2;…;依此下去,得到一系列點M1,M2,…Mn,…;設(shè)它們的橫坐標(biāo)a1,a2,…,
an…構(gòu)成數(shù)列為{an}.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:;
(Ⅲ)當(dāng)k=2時,令,求數(shù)列{bn}的前n項和Sn
【答案】分析:(Ⅰ)對y=xk求導(dǎo)數(shù),得y′=kxk-1,切點是Mn(an,ank)的切線方程是y-ank=kank-1(x-an).當(dāng)n=1時,;當(dāng)n>1時,得.由此能求出數(shù)列{an}的通項公式.
( II)應(yīng)用二項式定理,得
( III)當(dāng)k=2時,an=2n,數(shù)列{bn}的前n項和Sn=,利用錯位相減法能夠得到Sn=
解答:解:(Ⅰ)對y=xk求導(dǎo)數(shù),
得y′=kxk-1
點是Mn(an,ank)的切線方程是y-ank=kank-1(x-an).…(2分)
當(dāng)n=1時,切線過點P(1,0),
即0-a1k=ka1k-1(1-a1),
;
當(dāng)n>1時,切線過點Pn-1(an-1,0),
即0-ank=kank-1(an-1-an),

所以數(shù)列{an}是首項,公比為的等比數(shù)列,
所以數(shù)列{an}的通項公式為.…(4分)
( II)應(yīng)用二項式定理,得.…(8分)
( III)當(dāng)k=2時,an=2n
數(shù)列{bn}的前n項和Sn=,
同乘以,得=,
兩式相減,…(10分)
=,
所以Sn=.…(12分)
點評:本題考查數(shù)列的通項公式的求法,證明,求數(shù)列的前n項和.對數(shù)學(xué)思維的要求比較高,要認(rèn)真審題,注意錯位相減法的靈活運用,本題有一定的探索性.綜合性強(qiáng),難度大,易出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,過點P(1,0)作曲線C:y=xk(x∈(0,+∞),k∈N*,k>1)的切線,切點為Q1,設(shè)Q1點在x軸上的投影是點P1;又過點P1作曲線C的切線,切點為Q2,設(shè)Q2在x軸上的投影是P2;…;依此下去,得到一系列點Q1,Q2,…,Qn,…,設(shè)點Qn的橫坐標(biāo)為an
(Ⅰ)試求數(shù)列{an}的通項公式an;(用k的代數(shù)式表示)
(Ⅱ)求證:an≥1+
n
k-1
;
(Ⅲ)求證:
n
i=1
i
ai
k2-k
(注:
n
i=1
ai=a1+a2+…+an
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•錦州一模)過點P(1,0)作曲線C:y=x2(x>0)的切線,切點為Q1,沒Q1在x軸上的投影是P1,又過P1,作曲線C的切線,切點為Q2,設(shè)Q2在x軸上的投影是P2…,依次下去,得到一系列點Q1Q2,…Qn,設(shè)Qn的橫坐標(biāo)為an
(I)求a1的值及{an}的通項公式;
(Ⅱ)令bn=
an(an-1)(an+1-1)
,設(shè)數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,0)作曲線C:y=x2(x∈(0,+∞)的切線,切點為M1,設(shè)M1在x軸上的投影是點P1.又過點P1作曲線C的切線,切點為M2,設(shè)M2在x軸上的投影是點P2,….依此下去,得到一系列點M1,M2…,Mn,…,設(shè)它們的橫坐標(biāo)a1,a2,…,an,…,構(gòu)成數(shù)列為{an}.
(1)求證數(shù)列{an}是等比數(shù)列,并求其通項公式;
(2)令bn=
nan
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)二模)如圖,過點P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點為Q1,設(shè)點Q1在x軸上的投影是點P1;又過點P1作曲線C的切線,切點為Q2,設(shè)Q2在x軸上的投影是P2;…;依此下去,得到一系列點Q1,Q2,Q3-Qn,設(shè)點Qn的橫坐標(biāo)為an
(1)求直線PQ1的方程;
(2)求數(shù)列{an}的通項公式;
(3)記Qn到直線PnQn+1的距離為dn,求證:n≥2時,
1
d1
+
1
d2
+…
1
dn
>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,0)作曲線C:y=x2(x>0)的切線,切點為M1,設(shè)點M1在x軸上的投影是點P1,又過點P1作曲線C的切線,切點為M2,設(shè)點M2在x軸上的投影是點P2,…依此下去,得到點列P1,P2,P3,…,記它們的橫坐標(biāo)a1,a2,a3,…構(gòu)成數(shù)列{an}.
(Ⅰ)求an與an-1(n≥2)的關(guān)系式;
(Ⅱ)令bn=
nan
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案