15.若a為實(shí)數(shù),命題“任意x∈[0,4],x2-2a-8≤0”為真命題的充要條件是( 。
A.a≥8B.a<8C.a≥4D.a<4

分析 利用參數(shù)分離法進(jìn)行轉(zhuǎn)化,求出函數(shù)的最值即可得到結(jié)論.

解答 解:若“任意x∈[0,4],x2-2a-8≤0”,則等價(jià)為x2≤2a+8,
∵x∈[0,4],
∴x2∈[0,16],
∴x2的最大值為16,
即16≤2a+8,
則2a≥8,得a≥4,
即,命題“任意x∈[0,4],x2-2a-8≤0”為真命題的充要條件是a≥4,
故選:C.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,利用參數(shù)法轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓x2+y2+x-2y-20=0與圓x2+y2=25相交所得的公共弦長(zhǎng)為4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.高三某班級(jí)10名同學(xué)的物理期中考試成績(jī)分布的莖葉圖如圖,其中一名同學(xué)的成績(jī)有誤,其末位數(shù)記為x,已知這10名學(xué)生成績(jī)的中位數(shù)與平均數(shù)相同,則x的值為( 。
A.3B.5C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn,a1=2,2Sn=(n+1)an-n2an+1,數(shù)列{bn}滿足b1=1,bnbn+1=λ•2an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在正實(shí)數(shù)λ,使得{bn}為等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若f(x)=$\left\{{\begin{array}{l}{{{log}_2}x}&{(x>0)}\\{f(x+5)}&{(x≤0)}\end{array}}$,則f(-11)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=x|x-a|-2x+a2,若a∈[-2,4],求函數(shù)在[-3,3]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x|x-a|,a∈R,g(x)=x2-1.
(1)當(dāng)a=1時(shí),解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn).若f(x)=ax2+(b+1)x+b-1(a≠0).
(1)若a=1,b=3,求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且線段AB的中點(diǎn)在直線y=-x+$\frac{1}{2{a}^{2}+1}$上,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若規(guī)定$|\begin{array}{l}{a}&\\{c}&a2aumkk\end{array}|$=ad-bc,則$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=_-2,不等式1<$|\begin{array}{l}{2x}&{1}\\{1}&{x}\end{array}|$<7的解集為(-2,-1)∪(1,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案