6.高三某班級10名同學(xué)的物理期中考試成績分布的莖葉圖如圖,其中一名同學(xué)的成績有誤,其末位數(shù)記為x,已知這10名學(xué)生成績的中位數(shù)與平均數(shù)相同,則x的值為( 。
A.3B.5C.7D.8

分析 根據(jù)莖葉圖中的數(shù)據(jù),利用平均數(shù)和中位數(shù)的計算公式,即可求出x的值.

解答 解:根據(jù)莖葉圖知,該同學(xué)成績的中位數(shù)是$\frac{70+72}{2}$=71,
平均數(shù)是$\frac{59+62+(60+x)+67+70+72+76+77+79+81}{10}$=71,
解得x=5.
故選:B.

點評 本題考查了莖葉圖的應(yīng)用問題,從莖葉圖中提取數(shù)據(jù)是利用莖葉圖解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是12π,體積是$\frac{13π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知隨機(jī)變量ξ的數(shù)學(xué)期望E(ξ)=0.05且η=5ξ+1,則E(η)等于1.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中正確的是(  )
A.若命題P:?x0∈R,x02-x0+1<0,則¬P:?x∉R,x2-x+1≥0
B.命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點,則實數(shù)m∈[0,1]”的逆否命題為真命題
C.已知相關(guān)變量(x,y)滿足回歸方程$\widehat{y}$=2-3x,若變量x增加一個單位,則y平均增加3個單位
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個四面體的頂點在點間直角坐系O-xyz中的坐標(biāo)分別是(1,0,0),(0,1,0),(0,0,1),(1,1,1),畫該四面體三視圖中的正視圖時,以xOz平面為投影面,則得到的正視圖可為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(1-x),x<1}\\{\frac{2}{x-1},x>1}\end{array}\right.$,g(x)=$\frac{k}{{x}^{2}}$(k>0),對任意p∈(1,+∞),總存在實數(shù)m,n滿足m<0<n<p,使得f(p)=f(m)=g(n),則整數(shù)k的最大值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)=$\left\{{\begin{array}{l}{sinx,x∈[0,1]}\\{{x^2},x∈[1,2]}\end{array}}$,則$\int_0^2$f(x)dx等于( 。
A.$\frac{7}{3}$-cos1B.$\frac{10}{3}$-cos1C.$\frac{7}{3}$+cos1D.$\frac{10}{3}$+cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a為實數(shù),命題“任意x∈[0,4],x2-2a-8≤0”為真命題的充要條件是( 。
A.a≥8B.a<8C.a≥4D.a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),圓C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))
(1)當(dāng)α=$\frac{π}{3}$時,求C1被C2截得的線段的長;
(2)過坐標(biāo)原點O作C1的垂線,垂足為A,當(dāng)α變化時,求A點軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案