一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
17
6
B、
13
6
C、
7
2
D、
10
3
考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:幾何體為底面為長方形,長為2,寬為1,高為2的棱柱,切去一個棱臺,上底面為 直角三角形,直角邊為1,
1
2
,下底面為直角三角形,直角邊為2,1,即可求出體積.
解答: 解:幾何體為底面為長方形,長為2,寬為1,高為2的棱柱,切去一個棱臺,上底面為 直角三角形,直角邊為1,
1
2
,下底面為直角三角形,直角邊為2,1,故體積為1×2×2-
7
8
×
1
3
×
1
2
×1×2×4
=
17
6

故選:A.
點評:本題考查由三視圖求面積、體積,考查學生的計算能力,確定幾何體的形狀是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正實數(shù)x,y滿足2x+3y=1,則
1
x
+
1
3y
的最小值為(  )
A、2
B、2
2
C、2+2
2
D、3+2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2+5x-6<0的解集為(  )
A、(-6,1)
B、(-∞,6)∪(1,+∞)
C、(-3,-2)
D、(-∞,3)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x-3)2+y2=16和圓(x+1)2+(y-m)2=1相切,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an≠0,a1=
1
3
,an-1-an=2an•an-1(n≥2,n∈N*).
(1)求證:(
1
an
)
是等差數(shù)列;
(2)證明:a12+a22+…+an2
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)a、b、c、d滿足|b+a2-3lna|+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Z1是虛數(shù),Z2=Z1+
1
Z1
是實數(shù),且-1≤Z2≤1.
(1)求|Z1|的值以及Z1的實部的取值范圍;
(2)若ω=
1-Z1
1+Z1
.求證ω為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)y=f(x)滿足當x<0時,f(x)=x2,則
f(f(…f(1)))
2015個f
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ+cosθ=2sinα,sinθ•cosθ=sin2β,求證:4cos2α=1+2cos2β.

查看答案和解析>>

同步練習冊答案