分析 (1)根據(jù)平面向量垂直,它們的數(shù)量積為0,列出方程求出μ的值;
(2)根據(jù)平面向量的坐標(biāo)運(yùn)算,求出向量$\overrightarrow{AB}$與$\overrightarrow{AM}$,再利用兩向量共線,列出方程,求出λ的值.
解答 解:(1)∵A(0,2),B(4,6),
λ=2時(shí),$\overrightarrow{OM}$=2$\overrightarrow{OA}$+μ$\overrightarrow{AB}$,
且$\overrightarrow{OM}⊥\overrightarrow{AB}$,
∴$\overrightarrow{OM}$•$\overrightarrow{AB}$=0
∴(2$\overrightarrow{OA}$+μ$\overrightarrow{AB}$)•$\overrightarrow{AB}$=0
2$\overrightarrow{OA}$•$\overrightarrow{AB}$+μ${\overrightarrow{AB}}^{2}$=0
$\overrightarrow{OA}$=(0,2),$\overrightarrow{AB}$=(4,4)
∴4×4+32μ=0
解得μ=-$\frac{1}{2}$;
(2)∵對(duì)任意實(shí)數(shù)μ,恒有A,B,M三點(diǎn)共線,
∴$\overrightarrow{AB}$、$\overrightarrow{AM}$是共線向量,
又∵$\overrightarrow{AB}$=(4,4),
$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{AB}$=(0,2λ)+(4μ,4μ)=(4μ,2λ+4μ),
∴$\overrightarrow{AM}$=(4μ,2λ+4μ-2),
∴4(2λ+4μ-2)-4×4μ=0,
解得λ=1.
點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算與向量的平行和垂直的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1)、(3)、(4) | B. | (1)、(2)、(3) | C. | (3)、(4) | D. | (1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow n=±({1,-1,1})$ | B. | $\overrightarrow n=±({\frac{1}{3},-\frac{1}{3},\frac{1}{3}})$ | C. | $\overrightarrow n=±({\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $\overrightarrow n=±({\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com